Oblique Propagation of Nonlinear Solitary Waves in Magnetized Plasma with Nonextensive Electrons

Main Article Content

Parveen Bala
Harpreet Kaur

Abstract

In this paper, authors have studied the properties of obliquely propagating nonlinear solitary waves in a plasma system consisting of warm ions and nonextensively distributed electrons. The nonlinear Korteweg-de-Vries (KdV) equation and its solution have been derived using the standard reductive perturbation method. The effect of ion temperature on the propagation of solitary waves has been investigated numerically. The critical value of nonextensivity at which solitary structures transit from negative to positive potential is found to shift to the lower value under the effect of finite temperature. The numerical results are interpreted graphically. The results may be useful for understanding the wave propagation in laboratory and space plasmas where magnetic field is present.

Keywords:
Magnetized plasma, q-nonextensive distribution, reductive perturbation method, nonlinear waves and soliton

Article Details

How to Cite
Bala, P., & Kaur, H. (2019). Oblique Propagation of Nonlinear Solitary Waves in Magnetized Plasma with Nonextensive Electrons. Physical Science International Journal, 22(1), 1-9. https://doi.org/10.9734/psij/2019/v22i130121
Section
Original Research Article

Article Metrics


References

Ikezawa S, Nakamura Y. Observation of electron plasma waves in plasma of two-temperature elecrtons. J Phys Soc Jpn. 1981;50:962-67.

Dubouloz N, Pottelette R, Malingre M, Holmgren G, Lindqvist PA. Detailed analysis of broadband electrostsic noise in the dayside auroral zone. J Geophys Res. 1991;96:3565.

Mozer FS, Ergun R, Temarin M, Cattell C, Dombeck J, Wygnet J. New features of time domain electric-field structures in the auroral acceleration region. Phys Rev Lett. 1997;79:1281.

Stasiewicz K. Nonlinear Alfven, magnetosonic, sound, and electron inertial waves in fluid formalism. J Geophys Res. 2005;110:A03220.

Shinsuke I, Yukiharu O. Nonlinear waves along the magnetic field in a multi-lon species plasma. J Plasma Fusion Res. 2001;4:500-504.

Dubinin EM, Sauer K, McKenzie JF, Chanteur G. Nonlinear waves and solitons propagating perpendicular to the magnetic field in bi-ion plasma with finite plasma pressure. Nonlinear Process Geophys. 2002;9:87-99.

El-Taibany WF, Moslem WM. Higher-order nonlinearity of electron-acoustic solitary waves with vortex-like electron distribution and electron beam. Phys Plasmas. 2005;12:032307.

Gill TS, Bala P, Kaur H, Saini NS, Bansal S. Ion acoustic solitons and double layers in a multicomponent plasma consisting of positive and negative ions with nonthermal electrons. Eur Phys J D. 2004;31:91.

Miller HR, Witta PJ. Active galactic nuclei. Springer, Berlin, Germany; 1978.

Michel FC. Theory of pulsar magnetospheres. Rev Mod Phys. 1982;54: 1-66.

Singh SV, Devanandhan S, Lakhina GS, Bharuthram R. Effect of ion temperature on ion-acoustic solitary waves in a magnetized plasma in presence of superthermal electrons. Phys Plasmas. 2013;20:012306.

Alinejad H, Mamun AA. Oblique propagation of electrostatic waves in a magnetized electron-positron-ion plasma with superthermal electrons. Phys Plasmas. 2011;18:112103.

Mahmood S, Mushtaq A, Saleem H. Ion acoustic solitary wave in homogeneous magnetized electron–positron–ion plasmas. New J Phys. 2003;5(28):1–28.

Jehan N, Salahuddin M, Saleem H, Mirza AM. Modulation instability of low-frequency electrostatic ion waves in magnetized electron-positron-ion plasma. Phys Plasmas. 2008;15:092301.

Mio J, Ogino T, Minami K, Takeda S. Modulational instability and envelope solitons for non-linear Alfven waves propagating along the magnetic field in plasmas. J Phys Soc Jpn. 1976;41:667–73.

Dubouloz N, Treumann RA, Pottelette R, Malingre M. Turbulence generated by a gas of electron acoustic solitons. J Geophys Res. 1993;98:17415–22.

Mace RL, Hellberg MA. The Korteweg–de Vries– Zakharov–Kuznetsov equation for electron-acoustic waves. Phys Plasmas. 2001;8:2649.

Devanandhan S, Singh SV, Lakhina GS, Bharuthram R. Electron acoustic waves in a magnetized plasma with kappa distributed ions. Phys Plasmas. 2012;19: 082314.

Pakzad HR, Javidan K. Obliquely propagating electron acoustic solitons in magnetized plasmas with nonextensive electrons. Nonlin Process Geophys. 2013;20:249-55.

Renyi A. On a new axiomatic theory of probability. Acta Math Hung. 1955;16:285-335.

Tsallis C. Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys. 1988;52:479-87.

Plastino AR. Stellar polytropes and Tsallis’ entropy. Phys Lett A. 1993;174:384-86.

Kaniadakis G, Lavagno A, Quarati P. Generalized statistics and solar neutrinos. Phys Lett B. 1996;369:308-12.

Lavagno A, Kaniadakis G, Rego-Monteiro M, Quarati P, Tsallis C. Non-extensive thermostatistical approach of the peculiar velocity function of galaxy clusters. Astrophys Lett Commun. 1998;35:449–55.

Rossignoli R, Canosa N. Non additive entropies and quantum statistics. Phys Lett A. 1999;281:148-53.

Abe S, Martinez S, Pennini F, Plastino A. Nonextensive thermodynamics relations. Phys Lett A. 2001;281:126-30.

Akhtar N, El Taibany WF, Mahmood S. Electrostatic double layers in arm negative ion plasma with nonextensive electrons. Phys Lett A. 2013;377:1282-89.

Gill TS, Bala P, Kaur H. Electrostatic wave structures and their stability analysis in nonextensive magnetized electron-positron-ion plasma. Astrophys Space Sci. 2015;357:63.

Reynolds AM, Veneziani M. Rotational dynamics of turbulence and Tsallis. Phys Lett A. 2004;327:9-14.

Sattin F. Non-extensive entropy from incomplete knowledge of Shannon entropy. Phys Scr. 2005;71:443-46.

Wada T. On the thermodynamic stability of Tsallis entropy. Phys Lett A. 2002;297:334-37.

Wu J, Che H. Fluctuation in nonextensive reaction–diffusion systems. Phys Scr. 2007;75:722-25.

Tribeche M, Djebarni L, Amour R. Ion acoustic solitary waves in a plasma with a q-nonextensive electron velocity distribution. Phys Plasmas. 2010;17: 04211.

Ferdousi M, Sultana S, Mamun AA. Oblique propagation of ion-acoustic solitary waves in a magnetized electron-positron-ion plasma. Phys. Plasmas. 2015;22:032117.

Gardner CS, Morikawa GK. Similarity in the asymptotic behaviour of collision free hydromagnetic waves and water waves. Courant Institute of Mathematical Sciences Rep. NYO. 1960;9082:1-30.

Sahoo H, Chandra S, Ghosh B. Dust acoustic solitary waves in magnetized dusty plasma with trapped ions and q-non-extensive electrons. Afr Rev Phys. 2015;10:235-41.

Misra AP, Wang Y. Dust-acoustic solitary waves in magnetized dusty plasma with nonthermal electrons and trapped ions. Afr Rev Phys. 2014;10:0032.