The Vacancy Energy in Metals: Cu, Ag, Ni, Pt, Au, Pd, Ir and Rh

Main Article Content

T. H. Akande
F. Matthew-Ojelabi
G. S. Agunbiade
E. B. Faweya
A. O. Adeboje

Abstract

The predictive calculations of vacancy formation energies in metals: Cu, Ag, Ni, Pt, Au, Pd, Ir and Rh are presented. The energy is given as a function of electron density. Density functional theory underestimates the vacancy formation energy when structural relaxation is included. The unrelaxed mono-vacancy formation, unrelaxed di-vacancy formation, unrelaxed di-vacancy binding and low index surface energies of the fcc transition metals Cu, Ag, Ni, Pt, Au, Pd, Ir and Rh has been calculated using embedded atom method. The values for the vacancy formation energies agree with the experimental value. We also calculate the elastic constants of the metals and the heat of solution for the binary alloys of the selected metals. The average surface energies calculated by including the crystal angle between planes (hkl) and (111) correspond to the experiment for Cu, Ag, Ni, Pt and Pd. The calculated mono-vacancy formation energies are in reasonable agreement with available experimental values for Cu, Ag, Au and Rh. The values are higher for Pt and Ir while smaller values were recorded for Ni and Pd. The unrelaxed di-vacancy binding energy calculated agrees with available experimental values in the case of Cu, Ni, Pt and Au. 

Keywords:
EAM, energy calculations, elastic constants, heats of solutions

Article Details

How to Cite
Akande, T. H., Matthew-Ojelabi, F., Agunbiade, G. S., Faweya, E. B., & Adeboje, A. O. (2019). The Vacancy Energy in Metals: Cu, Ag, Ni, Pt, Au, Pd, Ir and Rh. Physical Science International Journal, 22(3), 1-12. https://doi.org/10.9734/psij/2019/v22i330132
Section
Original Research Article

References

Daw MS, Bisson CL, Wilson WD. Solid Commun. 1983;46.

Puska J, Nieminen RM, Manninen M. Phys. Rev. B. 1981;24:3037.

Finnis MW, Sinclair JE. Philos. Mag. A. 1984;50:45.

Manninen M. Phys. Rev. B. 1986;34:8486.

Jacobson KW, Nárskov JK, Puska J. Phys. Rev. B. 1987;35:7423.

Johnson RA. Phys. Rev. B. 1988;37:3924.

Mei J, Devenport JW, Fernando G.W. Phys. Rev. B. 1990;43:4653.

Cai J, Ye YY. Phys. Rev. B. 1996;54:8398.

Banerjea A, Smith JR. Phys. Rev. B. 1988; 37:6632.

Laura Bukonte. Modelling of defect formation and evolutionin metals and silicon. Division of Materials Physics, University of Helsinki-Helsinki, Finland. 2017;1-66.
[ISBN: 978-951-51-2768-6]

Zhang HY, Lu F, Yang Y, Sun DY. Scientific Reports. 2017;7(10241):1-8.

Rose JH, Smith JR, Guinea F, Ferrante J. Phys. Rev. B. 1984;29:2963.

Cheng Weiren, Zhang Hui, Zhao Xu, Su Hui, Tang Funmin, Tian Jie, Lui Quinghua Journals of Materials Chemistry A. 2018; 20:1- 19.

Richard P. Oleksak, Monica Kapoor, Daniel E. Perea, Gordon R. Holcomb, Ömer N. Doğan. Npj Materials Degradation. 2018;25:1-8.

Zhang RF, Liu BX. Proposed model for calculating the standard formation enthalpy of binary transition-metal systems. Appl. Phys. Lett. 2002;81:1219–1221.

Iyad AH, Young P. J. Mater. Sci. Technol. 2009;25:6.

Foiles SM, Baskes MI, Daw MS. Phys. Rev. B. 1986;33:7983.

Simmons G, Wang H. Single crystal elastic constants and calculated aggregate properties: A handbook (MIT Press, Cambridge); 1971.

Kittel C. Introduction to solid state Physics. 7th edition. John Willey and Sons. Inc., New York, Chicester, Brisbarne, Toronto, Singapore. 1996;28–98.

Landolt-Bo ̈rnstein. New Series, Vols. III-11 and III-18 Berlin: Springer-Verlag; 1991.

Ziesche P, Perdew JP, Fiolhais C. Spherical voids in the stabilized Jellium model: Rigouruos theorems and pad; Representation of the Void-Formation Energy. Phy. Rev. B. 1994;49:7916.

Sisoda P, Verma MP. Shear moduli of polycrystalline cubic elements. J. Phys. Chem. Solids. 1989;50:223–224.

De Boer FR, Boom R, Mattens WCM, Miedema AR, Niessen AK. Cohesion in Metals, Amsterdam: North Holland. 1988;1.

Ballufi RW. J Nucl. Matter. 1978;69(70): 240.

Johnson RA. Phys. Rev. B. 1989;39(17): 12554–12559.

Ghorai A. Physica Status Solidi B. 1991; 167:551.

Seeger A, Gerold V, Chik KP, Ruhle M. Phys. Letters. Netherlands. 1963;6 :107.

Seeger A, Schumacher D. Mater. Sci. Eng. 1967;2:31.

Fluss MJ, Smedskjaer LC, Siegel RW, Longini DG, Chason MK. J. Phys. F. 1980;10:1763.

Kraftmakher YA, Strelkov PG. In vacancies and interstitials in metals, edited by Seeger A, Schumacher D, Schilling W, Diehl J. (North-Holl and), Amsterdam. 1970;59.

Mehrer H, Kbonmuller H, Seeger H. Phys. Stat. Sol. 1965;10:725.

Baskes MI. Phys. Rev B. 1992;46:2727.

Bauerle JE, Koehler JS. 1957;107:1493.

Meshii M, Mori T, Kauffman JW. Phys. Rev. 1962;185:1239.

Ehrhart P, Jung P, Schultz H, Ullmaier H. Atomic defects in metals. Springer verlag. Edited by Ullmaier H. Landolt- Bo ̈rnstein. New Series. Group III/25, Berlin; 1991.

Nanao S, Kuribayashi K, Tanigawa S, Doyama M. J. Phys. F: Met. Phys. 1977; 7:1403.

Miedema AR, de`Chatel PF, de Boer FR. Physica B. 1980;100:1.

Hultgren R, Desai PD, Hawkins DT, Gleiser M, Kelley KK. Selected values of the thermodynamic properties of binary alloys (American Society for Metals, Metals Park, OH); 1973.

Ledbetter H, Kim S. Monocrystal elastic constants and derived properties of the cubic and the hexagonal elements, in: Handbook of elastic properties of solids, liquids and gases, Academic Press. 2001;2.