Dilation of Time and Newton’s Absolute Time

Main Article Content

Stefan Von Weber
Alexander Von Eye


The Cosmic Membrane theory states that the space in which the cosmic microwave background radiation has no dipole is identical with Newton’s absolute space. Light propagates in this space only. In contrast, in a moving inertial frame of reference light propagation is in-homogeneous, i.e. it depends on the direction. Therefore, the derivation of the dilation of time in the sense of Einstein’s special relativity theory, i.e., together with the derivation of the length contraction under the constraint of constant cross dimensions, loses its plausibility, and one has to search for new physical foundations of the relativistic contraction and dilation of time. The Cosmic Membrane theory states also that light paths remain always constant independent on the orientation and the speed of the moving inertial frame of reference. Effects arise by the dilation of time. We predict a long term effect of the Kennedy-Thorndike experiment, but we show also that this effect is undetectable with today’s means. The reason is that the line width of the light sources hides the effect. The use of lasers, cavities and Fabry-Pérot etalons do not change this. We propose a light clock of special construction that could indicate Newton’s absolute time t0 nearly precisely.

Dilation of time, relativity, membrane, absolute space, Kennedy-Thorndike experiment

Article Details

How to Cite
Weber, S., & Eye, A. (2019). Dilation of Time and Newton’s Absolute Time. Physical Science International Journal, 23(1), 1-20. https://doi.org/10.9734/psij/2019/v23i130141
Original Research Article


Ives HE, Stilwell GR. An experimental study of the rate of a moving atomic clock. J. Opt. Soc. Am. 1938;28:215-226.

Botermann B, et al. Test of Time Dilation Using Stored Li+ Ions as clocks at relativistic speed. Phys. Rev. Lett. 2014;113:120405.
Available: Test of Time Dilation Using Stored Li+

Häfele JC, Keating R. Around-the-world atomic clocks: Predicted relativistic time gains. Science. 1972;177:166-170.

Penzias AA, Wilson RW. A measurement of excess antenna temperature at 4080 Mc/s. ApJ. 1965;142:419-421.

Kogut A, et al. Dipole Anisotropy in the COBE Differential Microwave Radiometers First-Year Sky Maps. Astrophys. J. 1993; 419:1–6.

Von Weber S, Von Eye A. Multiple Weighted Regression Analysis of the Curvature of a 3D Brane in a 4D Bulk Space under a Homogeneous Vector Field. InterStat; 2010.

Von Weber S, Von Eye A. Monte Carlo study of vector field-induced dark matter in a spiral galaxy. InterStat; 2011.

Von Weber S, Von Eye A. Error analysis of simulated Einstein rings under the membrane paradigm. InterStat; 2013. Available:http://interstat.statjournals.net/YEAR/2013/articles/1310001.pdf

Von Weber S, Von Eye A. Geodetic precession under the paradigm of a cosmic membrane. Phys. Sci. Int. J. 2016; 10(4):1-14. Available:http://www.sciencedomain.org/abstract/14928

Von Weber S, Von Eye A. Two-way and one-way vacuum speed of light under the membrane paradigm. Phys. Sci. Int. J. 2017;15(2):1-17.
Available:http:Two-way and One-way Vacuum Speed of Light under the Membrane ...

Onoochin V, Von Weber S. On the size of moving rigid bodies determined from conditions of equilibrium of ions in a crystalline lattice. In Einstein and Poincaré: The Physical Vacuum. Dvoeglazov VV, editor. Apeiron Montreal; 2006.
ISBN: 0-9732911-3-3
Available:Einstein and Poincare: the physical vacuum - PDF Free Download

Mueller E. De la réalité des nombres, Bull. Soc. Frib. Sc. Nat. 2014;103:83-90. Available:https:De la réalité des nombres - e-periodica

Evenson KM, et al. Speed of light from direct frequency and wavelength measurements of the methane-stabilized laser. Phys. Rev. Lett. 1972;29(19):1346-49. Available:https://dx.doi.org/10.1103%2FPhysRevLett.29.1346

Kennedy RJ, Thorndike EM. Experimental establishment of the relativity of time. In: Physical Review. 1932;42(Nr. 3):S.400–418.
Available:bibcode:1932PhRv...42..400K. doi:10.1103/PhysRev.42.400

Mansouri R, Sexl RU. A test theory of special relativity. I: Simultaneity and clock synchronization. General Relat. Gravit. 1977;8(7):497-513.
DOI: 10.1007/BF00762635

Hils D, Hall, JL. Improved Kennedy-Thorndike experiment to test special relativity. In: Phys. Rev. Lett. 1990;64(Nr. 15):S.1697–1700. Available:bibcode:1990PhRvL..64.1697H. doi:10.1103/PhysRevLett.64.1697
PMID 10041466.

Braxmaier C, et al. Tests of relativity using a cryogenic optical resonator. In: Phys. Rev. Lett. 2002;88(Nr. 1):S.010401.
Available:bibcode:2002PhRvL..88a0401B. doi:10.1103/PhysRevLett.88.010401
PMID: 11800924.

Wolf, et al. Tests of Lorentz invariance using a microwave resonator. In: Physical Review Letters. 2003;90(Nr. 6):S.060402. Available:arxiv:gr-qc/0210049. bibcode:2003PhRvL..90f0402W. doi:10.1103/PhysRevLett.90.060402 PMID: 12633279.

Wolf, et al. Whispering gallery resonators and tests of Lorentz invariance. In: General Relativity and Gravitation. 2004;36(Nr. 10):S.2351–2372.
arxiv:gr-qc/0401017. bibcode:2004GReGr..36.2351W. doi:10.1023/B:GERG.0000046188.87741.51

Tobar, et al. Testing local Lorentz and position invariance and variation of fundamental constants by searching the derivative of the comparison frequency between a cryogenic sapphire oscillator and hydrogen maser. In: Physical Review D. 2010;81(Nr. 2):S.022003.
Available:arxiv:0912.2803. bibcode:2010PhRvD..81b2003T
DOI: 10.1103/PhysRevD.81.022003
Müller J, Soffel, MH. A Kennedy-Thorndike experiment using LLR data. In: Physics Letters A. 1995;198:S.71-73.
DOI: 10.1016/0375-9601(94)01001-B

Müller, et al. Improved Determination of Relativistic Quantities from LLR. In: Proceedings of the 11th International Workshop on Laser Ranging Instrumentation. 1999;10:S.216-222.
Available:http:Improved Determination of Relativistic Quantities from LLR

Robertson HP. Postulate versus observation in the special theory of relativity. In: Reviews of Modern Physics. 1949;21(Nr.3):S.378-382. Available:https:10.1103/RevModPhys.21.378

vaughan AH. Astronomical Fabry-Pérot interference spectroscopy. Ann. Rev. Astron. Astrophys. 1967;5:139-166.
Available:Astronomical Fabry-Perot Interference Spectroscopy - SAO/NASA ADS

Lecian OM. Alternative uses for quantum systems and devices. Symmetry. 2019; 11(4):462.
DOI: 10.3390/sym11040462
Available:(PDF) Alternative Uses for Quantum Systems and Devices | Orchidea ...

Hesser JE, Shawl SJ. An optical search for ionized hydrogen in globular clusters. 2. Astrophys. J. 1977;217:L143-L147.
Available:An optical search for ionized hydrogen in globular clusters. II

Ru-Pin Pan, et al. A novel tunable diode laser with liquid crystal intracavity tuning element. Available:https://doi.org/10.1080/15421400490439194

Schawlow AL, Townes CH. Infrared and Optical Masers, Phys. Rev. 1958;112: 1949-1949.
Available:https: Infrared and Optical Masers

Abbott, et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star inispiral, Phys. Rev. Lett., Band. 2017;119.
Available:https:GW170817: Observation of Gravitational Waves from a Binary Neutron ...

Abramovici, et al. LIGO: The laser interferometer gravitational-wave observatory. Science. 1992;256:325-333.
Available:https:LIGO: The Laser Interferometer Gravitational-Wave ... - Science

Kessler, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat. Photonics, Online 9. September 2012.
Available:https:A sub-40-mHz-linewidth laser based on a silicon single-crystal optical ...

Joos G. Theoretical physics. 15th Edition. AULA-Verlag Wiesbaden; 1989. German.

Puthoff HE. Polarizable-Vacuum approach to GR. Found. of Physics. 2002;32(6):1-24. Available:https://arxiv.org/ftp/gr-qc/papers/9909/9909037.pdf

Shiltsev VD. High energy particle colliders: Past 20 years, next 20 years and beyond. Fermilab Accelerator Physics Center; 2013.

Ruggiero F. Theoretical aspects of some collective instabilities in high-energy particle storage rings, CERN European Organization for Nuclear Research; 1986. Available:http:theoretical aspects of some collective instabilities in high-energy ...

Heidbrink WW. Basic physics of Alfvén instabilities driven by energetic particles in toroidally confined plasmas .... Physics of Plasmas. 2008;15:055501.
Available:https:Basic physics of Alfvén instabilities driven by energetic particles in ...

Ciufolini I. Dragging of inertial frames. Nature. 2007;449:41-47.

Ciufolini, et al. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model: Measurement of Earth's dragging of inertial frames. Eur Phys J C Part Fields. 2016; 76(3):120.
DOI: 10.1140/epjc/s10052-016-3961-8.

Epub 2016 Mar 4.

Nordtvedt K. Lunar laser ranging - a comprehensive probe of Post-Newtonian Gravity.
Available:https:Lunar Laser Ranging-a comprehensive probe of post-Newtonian gravity

Yuanbo Du, Rong Wei, Richang Dong. Progress of the portable rubidium atomic fountain clock in SIOM ... China Satellite Navigation Conference (CSNC); Proceedings. 2013;419-424.
Available:https:Progress of the Portable Rubidium Atomic Fountain Clock in SIOM ...

Hänsch TW. Nobel Lecture: Passion for precision. Reviews of Modern Physics. 2006;78(4):1297–1309
DOI: 10.1103/revmodphys.78.1297

Einstein A. On the influence of gravitation on the propagation of light. Ann. D. Phys. 1911;35:898-908.
Available:http:On the Influence of Gravitation on the Propagation of Light By A ...

Sagnac G. Sur la preuve de la réalité de l’éther lumineux par l’expérience de l’interférographe tournant. In: Comptes Rendus. 1913;157:S.1410–1413.
Available:fr:Sur la preuve de la réalité de l’éther lumineux par l’expérience de l’interférographe tournant

Van Raamsdonk M. Building up spacetime with quantum entanglement. In: General Relativity and Gravitation. 2010;42(19): S.2323–2329.
DOI: 10.1007/s10714-010-1034-0

Rovelli C, Smolin L. Discreteness of area and volume in quantum gravity, Nuclear Physics B, Band. 1995;442:S.593; Erratum. B. 1995;456:753.
Available:https:Discreteness of area and volume in quantum gravity