Relativistic Properties of a Lagrangian and a Hamiltonian in Quantum Theories

Main Article Content

Eliahu Comay

Abstract

Relativistic properties of a Dirac Lagrangian density are compared with those of a Dirac Hamiltonian density. Differences stem from the fact that a Lagrangian density is a Lorentz scalar, whereas a Hamiltonian density is a 00-component of a second rank tensor, called the energy-momentum tensor. This distinction affects the form of an interaction term of a Dirac particle. In particular, a tensor interaction term of a Dirac Lagrangian density transforms to a difference between a vector and an axial vector of the corresponding Hamiltonian density. This outcome shows that fundamental principles can prove the V-A attribute of weak interactions. A further analysis supports these results. Inherent problems of the electroweak theory are discussed.

Keywords:
Dirac Lagrangian density, Dirac Hamiltonian density, Dirac generalized momentum, weak interactions.

Article Details

How to Cite
Comay, E. (2019). Relativistic Properties of a Lagrangian and a Hamiltonian in Quantum Theories. Physical Science International Journal, 23(4), 1-9. https://doi.org/10.9734/psij/2019/v23i430162
Section
Original Research Article

References

Weinberg S. The quantum theory of fields. Cambridge University Press, Cambridge.1995;I.

Griffiths D. Introduction to elementary particles. 2nd Edition. Wiley-VCH, Weinheim; 2008.

Bjorken JD, Drell SD. Relativistic quantum fields. McGraw-Hill, New York; 1965.

Weinberg S. The quantum theory of fields. Cambridge University Press, Cambridge. 1995;II.

Salam A. Nobel lecture. Available: https://www.nobelprize.org/ uploads/2018/06/salam-lecture.pdf

Bilenky SM. Neutrino in standard model and beyond. Physics of Particles and Nuclei. 2015;46:475-496.
Available: https://link.springer.com/article/1134/S1063779615040024

Srednicki M. Quantum field theory. Cambridge University Press, Cambridge; 2007.

Formaggio JA, Zeller GP. From eV to EeV: Neutrino cross sections across energy scales. Reviews of Modern Physics. 2012;84:1307-1341.
Available: https://journals.aps.org/rmp/pdf/ 10.1103/RevModPhys.84.1307

Schweber SS. An introduction to relativistic quantum field theory. Harper & Row, New York. 1964;44-53.

Wigner E. On unitary representations of the inhomogeneous lorentz group. Annals of Mathematics. 1939;40:149-204.
Available: https://www.jstor.org/stable/ 1968551?seq=1metadata-info-tab-contents

Sternberg S. Group theory and physics. Cambridge University Press, Cambridge.1994;143-150.

Peskin ME, Schroeder DV. An introduction to quantum field theory. Addison-Wesley, Reading Mass; 1995.

Bjorken JD, Drell SD. Relativistic quantum mechanics. McGraw-Hill, New York; 1964.

Pauli W. Relativistic field theories of elementary particles. Reviews of Modern
Physics. 1941;13:203-232. Available: https://journals.aps.org/rmp/pdf/ 10.1103/RevModPhys.13.203

Comay E. A theory of weak interaction dynamics. Open Access Library Journal.
2016;3:1-10. Available: https://www.scirp.org/journal/ PaperInformation.aspx?paperID=72788

Comay E. Further aspects of weak interaction dynamics. Open Access Library Journal. 2017;4:1-11.
Available: https://www.scirp.org/journal/ PaperInformation.aspx?PaperID=74373

Comay E. Differences between two weak interaction theories. Physical Science International Journal. 2019;21(1):1-9. Available: http://www.journalpsij.com/index.php/PSIJ/article/view/30091/56456

Perkins DH. Introduction to high energy physics. Addison-Wesley, Menlo Park CA; 1987.

Halzen F, Martin AD. Quarks and leptons, an introductory course in modern particle physics. John Wiley, New York; 1984.

Feynman RP, Gell-Mann M. Theory of the fermi interaction. Physical Review.

;109:193-198. Available: https://journals.aps.org/pr/pdf/ 10.1103/PhysRev.109.193 Landau LD, Lifshitz EM. The classical theory of fields. Amsterdam, Elsevier; 2005.

Sterman G. An introduction to quantum field theory. (Cambridge University Press, Cambridge; 1993.
Available: https://en.wikipedia.org/wiki/Occam

Zeller GP. Particle Data Group. Available: http://pdg.lbl.gov/2019/reviews/ rpp2018-rev-nu-cross-sections.pdf

Tanabashi M, et al. Particle Data Group. Review of Particle Physics. Physical Review D. 2018;98:030001-031898. Available: http://pdg.lbl.gov/2018