Hubble Constant Tension in Terms of Information Approach

Main Article Content

Boris Menin

Abstract

Aims: The purpose of this work is to formulate the theoretically justified information approach to analyze different methods of measuring Hubble’s constant, and to verify their advantages and disadvantages.

Place and Duration of Study: Mechanical & Refrigeration Consultation Expert, between June 2019 and November 2019.

Methodology: Due to the fact that any measurement model contains a certain amount of information about the studied object, comparative uncertainty is introduced, by which the least achievable relative uncertainty when measuring the Hubble constant is calculated.

Results: The experimental results of measuring the Hubble constant presented in the scientific literature are analyzed using the proposed information approach.

Conclusion: The information approach can be considered as an additional look at the Hubble constant tension. Most likely, this will help to understand the current situation and identify possible specific ways to solve it.

Keywords:
Baryonic acoustic oscillations, brightness of standard candles, cosmic microwave background, Hubble constant, information theory, mathematical modelling, measurement, uncertainty.

Article Details

How to Cite
Menin, B. (2019). Hubble Constant Tension in Terms of Information Approach. Physical Science International Journal, 23(4), 1-15. https://doi.org/10.9734/psij/2019/v23i430165
Section
Original Research Article

References

Freedman WL, Madore BF. Constant Hubble. Annual Review of Astronomy and Astrophysics. 2010;48(1):673–710.
Accessed 4 December 2019
Available:http://sci-hub.tw/10.1146/ annurev-astro-082708-101829

Benson B. The Hubble Constant from the Cosmic Microwave Background. APS April Meeting. 2018;63(4).
Accessed 4 December 2019
Available:http://meetings.aps.org/Meeting/APR18/Session/H07.3

Bennett CL, Larson D, Weiland JL, Hinshaw G. The 1% concordance Hubble constant. The Astrophysical Journal. 2014; 794(135):1-8.
Accessed 4 December 2019
Available:http://iopscience.iop.org/article/10.1088/0004-637X/794/2/135/pdf

Riess AG, Casertano S, Yuan W, Macri LM, Scolnic D. Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics Beyond ΛCDM. 2019;1-25. Accessed 4 December 2019.
Available:https://arxiv.org/pdf/1903.07603.pdf

Ezquiaga JM, Zumalacárregui M. Dark Energy in Light of Multi-Messenger Gravitational-Wave Astronomy. Front. Astron. Space Sci. 2018;5(44):1-36. Accessed 4 December 2019
Available:https://www.frontiersin.org/articles/10.3389/fspas.2018.00044/full

Menin B. On the possible ratio of dark energy, ordinary energy and energy due to information. American Journal of Computational and Applied Mathematics. 2019;9(2):21-25.
Accessed 4 December 2019
Available:doi:10.5923/j.ajcam.20190902.01

Menin B. Is there a relationship between energy, amount of information and temperature? Physical science. International Journal. 2019;23(2):1- 9.
Accessed 4 December 2019 Available:http://www.journalpsij.com/index.php/PSIJ/article/view/30148/56562

Rabinovich SG. Evaluating measurement accuracy- A practical approach. New York: Springer Science+Business Media; 2013. Accessed 4 December 2019
Available:https://goo.gl/OEJYmY

Brillouin L. Science and Information Theory. New York: Dover; 2004.

Menin B. The Boltzmann Constant: Evaluation of measurement relative uncertainty using the information approach. Journal of Applied Mathematics and Physics. 2019;7(3):486-504.
Accessed 4 December 2019
Available: 10.4236/jamp.2019.73035.

Menin B. Progress in reducing the uncertainty of measurement of Planck’s Constant in terms of the information approach. Physical Science International Journal. 2019;21(2):1-11.
Accessed 4 December 2019
Available:http://www.journalpsij.com/index.php/PSIJ/article/view/30104/56478

Menin B. Precise measurements of the gravitational constant: Revaluation by the information approach. Journal of Applied Mathematics and Physics. 2019e; 7(6):1272-1288.
Accessed 4 December 2019
Available:http://file.scirp.org/pdf/JAMP_2019062614403787.pdf

Menin B. Calculation of relative uncertainty when measuring physical constants: CODATA technique vs information method. Physical Science International Journal. 2019;22(4):1-8.
Accessed 4 December 2019
Available:http://journalpsij.com/index.php/PSIJ/article/view/30136/56538

Newell DB, et al. The CODATA 2017 values of h, e, k, and NA for the revision of the SI. Metrologia. 2018;55:13-16.

Mohr PJ, Newell DB, Taylor BN, Tiesinga E. Data and analysis for the CODATA 2017 special fundamental constants adjustment. Metrologia. 2018;55:125-146.

Sonin AA. The physical basis of dimensional analysis. 2nd ed. Department of mechanical engineering, MIT; 2001. Accessed 4 December 2019.
Available:http://web.mit.edu/2.25/www/pdf/DA_unified.pdf

NIST Special Publication 330 (SP330). The International System of Units (SI) 2008.Accessed 4 December 2019. Available:https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.330-2019.pdf

Menin BM. Fundamental constants: evaluating measurement uncertainty. Cambridge Scholars Publishing, UK; 2019.

Yarin L. The Pi-Theorem. Springer-Verlag, Berlin; 2012.
Accessed 4 December 2019
Available: https://goo.gl/dtNq3D.

Schroeder MJ. An alternative to entropy in the measurement of information. Entropy. 2004;6:388–412.
Accessed 4 December 2019
Available: goo.gl/vg8fk5.

Von Furstenberg GM. Acting under uncertainty: Multidisciplinary conceptions. Springer-Science and Business Media, B.V., Dordrecht; 1990.
Accessed 4 December 2019
Available: https://goo.gl/QfD1TF

Jarzyna M, Banaszek K, Demkowicz-Dobrzański R. Dephasing in coherent communication with weak signal states. 2014;1–21.
Accessed 4 December 2019
Available:https://arxiv.org/pdf/1307.6871.pdf

Menin B. Information on the service of achieving high accuracy of models of cold energy storage systems. European Journal of Advances in Engineering and Technology. 2018;5(9):740-744.
Accessed 12 January 2019
Available:http://www.ejaet.com/PDF/5-9/EJAET-5-9-740-744

Menin BHK, NA: Evaluating the relative Uncertainty of measurement. American Journal of Computational and Applied Mathematics. 2018;8(5):93-102.
Accessed 12 January 2019
Available:http://article.sapub.org/10.5923.j.ajcam.20180805.02.html

Riess AG, et al. A 3% Solution: Determination of the hubble constant with the hubble space telescope and wide field camera 3. Astrophys. J. 2011; 730(119).
Accessed 4 December 2019 Available:https://arxiv.org/pdf/1103.2976.pdf

Efstathiou G. H0 revisited. Monthly notices of the royal astronomical society. 2014;440(2):1138–1152.
Accessed 4 December 2019
Available:http://sci-hub.tw/10.1093/mnras/ stu278

Riess AG, et al. A 2.4% Determination OF the local value of the hubble constant. The astrophysical Journal. 2016;826(56):1-31. Accessed 4 December 2019.
Available:https://iopscience.iop.org/article/10.3847/0004-637X/826/1/56/pdf

Riess AG. et al. New parallaxes of galactic cepheids from spatially scanning the hubble space telescope: Implications for the hubble constant. The Astrophysical Journal. 2018;855(136):1-18.
Accessed 4 December 2019
Available:https://iopscience.iop.org/article/10.3847/1538-4357/aaadb7/pdf

Birrer S, Treu T, Rusu CE, et al. Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 and a new measurement of the Hubble constant. 2018;1-28.
Accessed 4 December 2019.
Available:https://sci-hub.tw/10.1093/mnras/ stz200

Riess AG, et al. Milky way cepheid standards for measuring cosmic distances and application to Gaia DR2: Implications for the hubble constant. The Astrophysical Journal. 2018;861(126):1-13.
Accessed 4 December 2019
Available:https://iopscience.iop.org/article/10.3847/1538-4357/aac82e/pdf

Cheng CH, QingGuo H. An accurate determination of the Hubble constant from baryon acoustic oscillation datasets. Science China: Physics, Mechanics & Astronomy. 2015;58(9):1-6.
Accessed 4 December 2019
Available:http://sci-hub.tw/10.1007/s11433-015-5684-5

Hinshaw G, et al. Five-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data processing, sky maps, and basic results, The astrophysical Journal Supplement Series. 2009;180: 225-245.
Accessed 4 December 2019
Available: https://goo.gl/VBp3er

Jarosik N. et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Sky maps, systematic errors and basic results. The Astrophysical Journal Supplement Series. 2011;192(14): 1-15.
Accessed 4 December 2019
Available: https://goo.gl/ScM4uV

Bennett CL, et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final maps and results; 2013.
Accessed 4 December 2019
Available: https://goo.gl/SBr4Hc.

Planck collaboration, Planck 2015 results. XIII. Cosmological parameters. Astronomy & Astrophysics. 2016; 594(id.A13):1-63.
Accessed 4 December 2019
Available:http://sci-hub.tw/10.1051/0004-6361/201525830

Planck collaboration. Planck 2018 results. VI. Cosmological parameters. Astronomy & Astrophysics. 2018;1-71.
Accessed 4 December 2019
Available:https://www.cosmos.esa.int/documents/387566/387653/Planck_2018_
results_L06.pdf/38659860-210c-ffac-3921-e5eac3ae4101

Yu H, Ratra B, Wang FY. Hubble parameter and baryon acoustic oscillation measurement constraints on the hubble constant, the deviation from the spatially flat ΛCDM model, the deceleration–acceleration transition redshift, and spatial curvature. The Astrophysical Journal. 2018;856(1)3:1-11.
Accessed 4 December 2019
Available: http://sci-hub.tw/10.3847/1538-4357/aab0a2

Addison GE.et al. Elucidating ΛCDM: Impact of baryon acoustic Oscillation measurements on the hubble Constant discrepancy. 2018;1-13.
Accessed 4 December 2019
Available:https://arxiv.org/pdf/1707.06547.pdf

Gorban II. The physical-mathematical theory of hyper-random phenomena. Computer Science Journal of Moldova. 2017;25(2,74):145-194.
Accessed 8 December 2019
Available:http://www.math.md/files/csjm/v25-n2/v25-n2-(pp145-194).pdf

Dodson D. Quantum Physics and the Nature of Reality (QPNR) survey: 2011; 2013.
Accessed 12 January 2019
Available: https://goo.gl/z6HCRQ

Dedekind R. Was sind und was sollen die Zahlen? Friedrich vieweg und Sohn, Braunschweig. English translation: The nature and meaning of numbers; 2018.
Accessed 8 December 2019
Available:http://www.archive.org/details/essaysintheoryof00dedeuoft