The Standard Model vs. Physical Facts

Main Article Content

E. Comay

Abstract

Dynamical sectors of the Standard Model of particle physics are critically analyzed. It is proved that
quantum electrodynamics, quantum chromodynamics, and the electroweak theory are inconsistent
with fundamental physical principles. More than two examples apply to each of these theories, and
any of these examples substantiate the unacceptable status of the relevant theory. Unfortunately,
the mainstream particle physics literature ignores this situation and glorifies the Standard Model
as an excellent scientific theory.

Keywords:
Quantum electrodynamics, quantum chromodynamics, the electroweak theory, the standard model, critical analysis.

Article Details

How to Cite
Comay, E. (2020). The Standard Model vs. Physical Facts. Physical Science International Journal, 23(4), 1-12. https://doi.org/10.9734/psij/2019/v23i430167
Section
Original Research Article

References

Lord Kelvin. Nineteenth century clouds over the dynamical theory of heat and light.
Philos. Mag. 1901;2:1-40.
Available:https://www.equipes.lps.u-psud.fr/Montambaux/histoire-physique/Kelvin-1900.pdf

Rindler W. Special relativity. Oliver and Boyd, Edinburgh; 1966.

Schiff LI. Quantum mechanics. McGraw-Hill, New York; 1955.

Weinberg S. The quantum theory of fields. Vol. I. Cambridge University Press, Cambridge; 1995.

Griffiths D. Introduction to elementary particles. 2nd edition. Wiley-VCH, Weinheim; 2008.

Bjorken JD, Drell SD. Relativistic quantum fields. McGraw-Hill, New York; 1965.

Rohrlich F. Classical charged particle. World Scientific, New Jersey; 2007.

Peskin ME, Schroeder DV. An Introduction to quantum field theory. Addison-Wesley, Reading Mass; 1995.

Comay E. A new quantum paradox. Physical Science International Journal. 2016;12:1-6.
Available:http://www.sciencedomain.org/-abstract/16442

Landau LD, Lifshitz EM. The classical theory of fields. Elsevier, Amsterdam; 2005.

Jackson JD. Classical electrodynamics. 2nd edition. John Wiley, New York; 1975.

Comay E. Lorentz transformation of radiation 4-potential. Acta Phys. Pol. A.2018;133:1294-1298.
Available:http://przyrbwn.icm.edu.pl/APP/-PDF/133/app133z5p26.pdf

Comay E. On the significance of the fields’ energy-momentum tensor. Physical

Science International Journal. 2019;4:1-9.
Available:http://www.journalpsij.com/index.-php/PSIJ/article/view/30114/56496

Comay E. The rise and fall of the electromagnetic 4-potential. OALib.2018;5:1-18.
Available:https://www.scirp.org/journal/-PaperInformation.aspx?PaperID=88593

Wong SSM. Introductory nuclear physics. John Wiley, New York: 1998.

Haken H, Wolf HC. Molecular physics and elements of quantum chemistry. Springer, Berlin; 2004. 2nd edition.

Wilczek F. Hard-core revelations. Nature. 2007;445:156-157.
Available:https://www.nature.com/articles/-445156a

Ishii N, Aoki S, Hatsuda T. Nuclear Force from Lattice QCD. Phys. Rev. Lett. 2007;99:022001-1-022001-4.

Available:https://journals.aps.org/prl/pdf/-1103/PhysRevLett.99.022001

Yukawa H. On the Interaction of elementar particles. I. Progress of Theoretical Physics Supplement. 1955;1:1-10.
Available:https://academic.oup.com/ptps/-article/doi/10.1143/PTPS.1.1/1878532

Aubert JJ, et. al. The ratio of the nucleon structure functions FN for iron and

deuterium. Phys. Lett. B. 1983;123:275-278.
Available:https://reader.elsevier.com/reader/-sd/pii/0370269383904379?token=FB11B6D191991174418C08D0CBA933
FB3F54FF424DDAB3679220B9773F9E788BE0FE7917F261F33520FFB2C76E60D9

Pendry JB. The electronic structure of liquids. J. Phys. C. 1980;13:3357-3368.
Available:https://iopscience.iop.org/article/-1088/0022-3719/13/18/005/pdf

Malace S, Gaskell D, Higinbotham DW, Cloet C. The challenge of the EMC

effect: Existing dataand future directions.International Journal of Modern Physics E.2014;23:1430013-1-1430013-35.
Available:https://www.worldscientific.com/-doi/pdf/10.1142/S0218301314300136

Perkins DH. Introduction to high energy physics. Addison-Wesley, Menlo Park CA;

Halzen F, Martin AD. Quarks, Leptons.An introductory course in modern particle physics. John Wiley, New York; 1984.

Thomson M. Modern particle physics.Cambridge University Press, Cambridge;Tanabashi M, et al. (Particle Data Group),
Review of particle physics. Phys.
Rev. D 2018;98:030001-031898, and 2019 update.
Available:http://pdg.lbl.gov/2019/reviews/-contents-sports.html

Krisch AD. Hard collisions of spinning protons: Past, present and future. The
European Physical Journal A. 2007;31:417-423
Available:https://link.springer.com/article/-1140/epja/i2006-10232-4

Comay E. The regular charge-monopole theory and strong interactions. Elect. J. Theor. Phys. 2012;9:93-118.
Available:http://www.ejtp.com/articles/-ejtpv9i26p93.pdf

Comay O. Science or fiction? The phony side of particle physics. S. Wachtman’s Sons, CA; 2014.

Weinberg S. The quantum theory of fields. Vol. II. Cambridge University Press, Cambridge; 1995.

Berestetskii VB, Lifshitz EM, Pitaevskii LP. Quantum electrodynamics. Pergamon, Oxford; 1982.

Srednicki M. Quantum field theory.

Cambridge University Press, Cambridge; Bilenky SM. Neutrino in standard model and
beyond. Phys. Part. Nuclei. 2015;46:475-496.
Available:https://link.springer.com/journal/-/46/4 Salam A. Nobel Lecture.
Available: https://www.nobelprize.org/-uploads/2018/06/salam-lecture.pdf

Formaggio JA, Zeller GP. From eV to EeV: Neutrino cross sections across

energy scales. Reviews of Modern Physics. 2012;84:1307-1341.
Available: https://journals.aps.org/rmp/pdf/-1103/RevModPhys.84.1307

Comay E. Relativistic properties of a lagrangian and a hamiltonian in quantum

theories. Physical Science International Journal. 2019;23:1-9.
Available:http://www.journalpsij.com/index.-php/PSIJ/article/view/30162

Bauer TH, Spital RD, Yennie DR, Pipkin FM. The hadronic properties of the photon
in high-energy interactions. Rev. Mod. Phys.1978;50:261-436.
Available:https://journals.aps.org/rmp/-abstract/10.1103/RevModPhys.50.261

Wigner E. On unitary representations of the inhomogeneous Lorentz group. Annals of
Mathematics. 1939;40:149-204.
Available: https://www.jstor.org/stable/-?seq=1metadata-info-tab-contents

Schweber SS. An introduction to relativistic quantum field theory. Harper & Row, New
York. 1964; 44-53.

Sternberg S. Group theory and physics. Cambridge University Press, Cambridge. 1994;143-150.

Das A, Ferbel T. Introduction to nuclear and particle physics. Second Edition. World
Scientific Publishing, New Jersey; 2003.

A CERN publication. July 4, 2012.
Available: https://www.lhc-closer.es/taking-a-closer-look-at-lhc/0.higgs-particle

A Fermilab pablication; 2011.
Available:http://news.fnal.gov//11/the-standard-model-the-most-successful-theory-ever/

A Fermilab pablication. Republished in
Available: http://www.elliottmccrory.com/wp/-/the-standard-model-the-most-successful-theory-ever/