The Pause End and Major Temperature Impacts during Super El Niños are Due to Shortwave Radiation Anomalies

Main Article Content

Antero Ollila

Abstract

The hiatus or temperature pause during the 21st century has been the subject of numerous research studies with very different results and proposals. In this study, two simple climate models have been applied to test the causes of global temperature changes. The climate change factors have been shortwave (SW) radiation changes, changes in cloudiness and ENSO (El Niño Southern Oscillation) events assessed as the ONI (Oceanic Niño Index) values and anthropogenic climate drivers. The results show that a simple climate model assuming no positive water feedback follows the satellite temperature changes very well, the mean absolute error (MAE) during the period from 2001 to July 2019 being 0.073°C and 0.082°C in respect to GISTEMP. The IPCC’s simple climate model shows for the same period errors of 0.191°C and 0.128°C respectively. The temperature in 2017-2018 was about 0.2°C above the average value in 2002–2014. The conclusion is that the pause was over after 2014 and the SW anomaly forcing was the major reason for this temperature increase. SW anomalies have had their greatest impacts on the global temperature during very strong (super) El Niño events in 1997-98 and 2015-16, providing a new perspective for ENSO events. A positive SW anomaly continued after 2015-16 which may explain the weak La Niña 2016 temperature impacts, and a negative SW anomaly after 1997-98 may have contributed two strong La Niña peaks 1998-2001. No cause and effect connection could be found between the SW radiation and temperature anomalies in Nino areas.

Keywords:
Pause, hiatus, climate change, ENSO, El Niño, shortwave changes

Article Details

How to Cite
Ollila, A. (2020). The Pause End and Major Temperature Impacts during Super El Niños are Due to Shortwave Radiation Anomalies. Physical Science International Journal, 24(2), 1-20. https://doi.org/10.9734/psij/2020/v24i230174
Section
Original Research Article

References

Knight J. Global oceans. Do global temperature trends over the last decade falsify climate predictions? Bull. Am. Meteorol. Soc. 2009;90:S56-S57.

Fyfe JC, Meehl GA, England MH, Mann ME, Santer BD, Flato GM, Hawkins E, Gillett NP, Xie S-P, Kosaka Y, Swart NC. Making sense of the early-2000s warming slowdown. Nat. Clim. Change. 2016;6:224–228.

Otto A, Otto FEL, Boucher O, Church J, Hegerl G, Forster PM, Gillett NP, Gregory J, Johnson GC, Knutti R, Lewis N, Lohmann U, Marotzke J, Myhre G, Shindell D, Stevens B, Allen MR. Energy budget constraints on climate response. Nat. Geosci. 2013;6:415-416.

Fyfe JC, Gillett NP, Zwiers FW. Overestimated global warming over the past 20 years Nat. Clim. Change. 2013;3:767–769.

Kerr R.What happened to global warming? Scientists say just wait a bit. Science. 2009;326:28–29.
Available:https://doi:101126/science326_28a

Hunt BG. The role of natural climatic variation in perturbing the observed global mean temperature trend. Clim. Dyn. 2011;36:509–521.
Available:https://doiorg/101007/s00382-010-0799-x

Meehl GA, Arblaster JM, Fasullo JY, Hu A, Trenberth KE. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Clim. Change. 2011;1:360-364.

Schmidt GA, Shindell DT, Tsigaridis K. Reconciling warming trends. Nat. Geosci. 2014;7:158–160.

Huber M, Knutti R. Natural variability radiative forcing and climate response in the recent hiatus reconciled. Nat. Geosci. 2014;7:651–656.

Risbey JS, Lewandowsky S, Langlais C, Monselesan DP, O’Kane TJ, Oreskes N. Well-estimated global surface warming in climate projections selected for ENSO phase. Nat. Clim. Change. 2014;4:835–840.

Lewandowsky S, Risbey JS, Oreskes N. On the definition and identifiability of the alleged ‘hiatus’ in global warming. Sci. Rep. 2015;5:16784.

Lin M, Huybers P. Revisiting whether recent surface temperature trends agree with the CMIP5 ensemble. J. Clim. 2016;29:8673–8687.
Available:https://doiorg/101175/JCLI-D-16-01231

Katsman CA, van Oldenborgh GJ. Tracing the upper ocean's missing heat. Geophys. Res. Lett. 2011;38:L14610.
Available:https://doiorg/101029/2011GL048417

Meehl GA, Teng H. Case studies for initialized decadal hindcasts and predictions for the Pacific region. Geophys. Res. Lett. 2012;39:L22705.
Available:https://doiorg/101029/2012GL053423

Palmer MD, McNeall DJ, Dunstone NJ. Importance of the deep ocean for estimating decadal changes in Earth’s radiation balance. Geophys. Res. Lett. 2011;38:L12707.
Available:https://doiorg/101029/2011GL047835

Guemas V, Doblas-Reyes FJ, Andreu-Burillo I, Asif M. Retrospective prediction of the global warming slowdown in the past decade. Nat. Clim. Change. 2013;3:649–653.

Trenberth KE, Fasullo JT. An apparent hiatus in global warming? Earth’s Future. 2013;1:19–32.
Available:https://doiorg/101002/2013EF000165

Smith DG. Oceanography: Has global warming stalled? Nat. Clim. Change. 2013;3:618–619.

Chen X, Tung KK. Varying planetary heat sink led to global-warming slowdown and acceleration Science. 2014;345:897–903.
Available:https://doi:101126/science1254937

Durack PJ, Gleckler PJ, Landerer FW, Taylor KE. Quantifying underestimates of long-term upper-ocean warming. Nat. Clim. Change. 2014;4:999–1005.

Yan XH, Bouyer T, Trenberth KE, Karl TR, Xie S-P, Nieves V, Tung K-K, Roemmich D. The global warming hiatus: slowdown or redistribution? Earth’s Future. 2016;4:472–482.
Available:https://doiorg/101002/2016EF000417

Cheng L, Trenberth KE, Fasullo JT, Mayer M, Balmaseda M, Xhu J. Evolution of ocean heat concent related to ENSO. J. Climate. 2019;32:35293556.

Kosaka Y, Xie SP. Recent global-warming hiatus tied to equatorial pacific surface cooling. Nature. 2013;501:403-407.

National Center for Atmospheric Research (NCAR). PDO index.
Available:https://climatedataguideucaredu/climate-data/pacific-decadal-oscillation-pdo-definition-and-indices

National Center for Atmospheric Research (NCAR). AMO index.
Available:https://climatedataguideucaredu/climate-data/atlantic-multi-decadal-oscillation-amo

Hansen J, Sato M, Kharecha P, von Schuckmann K. Earth's energy imbalance and implications. Atmos. Chem. Phys. 2011;11:13421-13449.
Available:https://doiorg/105194/acp-11-13421-2011

Solomon S. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science. 2010;327: 1219-1223.
Available:https://doi101126/science1182488

Solomon S. The persistently variable ‘background' stratospheric aerosol layer and global climate change. Science. 2011;333:866-870.
Available:https://doi101126/science1206027

Santer BD, Bonfils C, Painter JF, Zelinka MD, Mears C, Solomon S, Schmidt GA, Fyfe JC, Cole JNS, Nazarenko L, Taylor KE, Wentz FJ. Volcanic contribution to decadal changes in tropospheric temperature.Nat. Geosci. 2014;7:85-189.

Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD. Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res. Atmos. 2006;111:D12106.
Available:https://doiorg/101029/2005JD006548

Easterling DR, Wehner MF. Is the climate warming or cooling? Geophys. Res. Lett. 2009;36:L08706.
Available:https://doiorg/101029/2009GL037810

Hansen J, Ruedy R, Sato M, Lo K. Global surface temperature change. Rev. Geophys. 2010;48:RG4004.
Available:https://doiorg/101029/2010RG000345

Foster G, Rahmstorf S. Global temperature evolution 1979–2010. Environ. Res. Lett. 2011;6:044022.
Available:https://doi:101088/1748-9326/6/4/044022

Kaufmann RK, Kauppi H, Mann ML, Stock JH. Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc. Nat. Acad. Sci. USA. 2011;208:11790–11793.
Available:https://doiorg/101073/pnas1102467108

Cohen JL,Furtado JC, Barlow M, Alexeev VA, Cherry JE. Asymmetric seasonal temperature trends. Geophys. Res. Lett. 2012;39:L04705.
Available:https://doiorg/101029/2011GL050582

Cowtan K, Way RG. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 2014;140:1935-1944.
Available:https://doi:101002/qj2297

Rajaratnam B, Romano J, Tsiang M, Diffenbaugh NS. Debunking the climate hiatus. Climatic Change. 2015;133:129–140.
Available:https://doi:101007/s10584-015-1495-y

Karl TR, Arguez A, Huang B, Lawrimore JH, McMahon JR, Menne MJ, Peterson TC, Vose RS, Zhang HM. Possible artifacts of data biases in the recent global surface warming hiatus. Science. 2015;348(6242):1469–1472.
Available:https://doi:101126/scienceaaa5632

Lewandowsky S, Risbey JS, Oreskes N. The ‘pause’ in global warming: turning a routine fluctuation into a problem for science. Bull. Am. Meteorol. Soc. 2016;97: 723–733.
Available:https://doiorg/101175/BAMS-D-14-001061

Trenberth KE, Zhang Y, Fasullo JT. Relationships among top‐of‐atmosphere radiation and atmospheric state variables in observations and CESM. J. Geophys. Res. Atmos. 2015;120:10074–10090.
Available:https://doiorg/101002/2015JD023381

Scafetta N, Mirandola A, Bianchini A. Natural climate variability part 2: Interpretation of the post 2000 temperature standstill. I.J.H.T. 2017;35:S18-S26.
Available:https://doi:1018280/ijht35Sp0103

Yin J, Overbeck J, Peyser C, Stouffer R. Big jump of record warm global mean surface temperature in 2014-2016 related to unusually large oceanic heat releases. Geophys. Res. Lett. 2018;45:1069-78.

Hedemann C, Mauritsen T, Jungclaus J, Marotzke J. The subtle origins of surface-warming hiatuses. Nat. Clim. Change. 2017;7:336–339.

Loeb NG, Thorsen TJ, Norris JR, Wang H, Su W. Changes in earth's energy budget during and after the “pause” in global warming: An observational perspective. Climate. 2018;6:62.
DOI: 103390/cli6030062

The University of Alabama in Hunsville (UAH). UAH temperature dataset.
Available:https://wwwnsstcuahedu/data/msu/v60/tlt/uahncdc_lt_60txt

National Oceanic and Atmospheric Adminsitration (NOAA). GISS surface temperature analysis (GISTEMP).
Available:https://datagissnasagov/gistemp/

IPCC AR4. Summary for Policymakers. IPCC Fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK; 2007.

IPCC AR5. The fifth assessment report. The physical science basis working group I contribution to the IPCC fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK; 2013.

IPCC TAR. The third assessment report Climate Change 2001. The Scientific basis Cambridge University Press, Cambridge, UK; 2001.

Hong LC, Lin HO, Jin FF. A southern hemisphere booster of super El Niño. Geophys. Res. Lett. 2014;41:2142-2149.
Available:https://doiorg/101002/2014GL059370

National Oceanic and Atmospheric Adminstration (NOAA). Oceanic Niño Index (ONI).
Available:https://wwwnwfscnoaagov/research/divisions/fe/estuarine/oeip/cb-meicfm

National Oceanic and Atmospheric Adminstration (NOAA). CERES EBAF-TOA Data Products.
Available:https://ceres-toollarcnasagov/ord-tool/jsp/EBAF4Selectionjsp

National Oceanic and Atmospheric Administration (NOAA)NCEP/NCAR Reanalysis Data.
Available:https://wwwesrlnoaagov/psd/cgi-bin/data/timeseries/timeseries1pl
(Accessed on 9 January 2019)

National Oceanic and Atmospheric Administration (NOAA). NOAA’s annual greenhouse index.
Available:https://wwwesrlnoaagov/gmd/aggi/

Ollila A. Challenging the scientific basis of the Paris climate agreement. Int. Jl. Clim. Ch. Man. 2018;11(1):18-34.
Available:https://doiorg/101108/IJCCSM-05-2017-0107

Stine AR, Huybers P, Fung IY. Changes in the phase of the annual cycle of surface temperature. Nature. 2009;457:435-441.

Kauppinen J, Heinonen JT, Malmi PJ. Major portions in climate change: Physical approach. Int. Rev. Phys. 2011;5:260-270.

Ollila A. Climate sensitivity parameter in the test of the Mount Pinatubo eruption. Ph. Sc. Int. Jl. 2016;9(4):1-14.

Ollila A. The potency of carbon dioxide (CO2) as a greenhouse gas. Dev. in Earth Sc. 2014;2:20-30.

Ollila A. Warming effect reanalysis of greenhouse gases and clouds. Ph. Sci. Int. Jl. 2019;13:1-13.

Ollila A. Challenging the greenhouse effect specification and the climate sensitivity of the IPCC. Ph. Sc. Int. Jl. 2019;22(2):1-19.

Foster AG, Rahmstorf S. Global temperature evaluation 1979-2010. Environ. Res. Lett. 2011;6:1-8.

National Oceanic and Atmospheric Administration (NOAA). MEI index.
Available:https://wwwesrlnoaagov/psd/enso/mei/

Mantua NJ, Hare SR. The Pacific decadal oscillation. J. Oceanogr. 2002;58:35–44.

Ollila A. Dynamics between clear cloudy and all-sky conditions: cloud forcing effects. J. Chem. Biol. Phys. Sc. 2013;4: 557-575.

Wong T, Wielicki BA, Lee III RB, Smith LS, Bush KA, Willis JK. Reexamination of the Observed Decadal Variability of the Earth Radiation Budget Using Altitude-Corrected ERBE/ERBS Nonscanner WFOV Data. J. Clim. 2005;19:4028-4040.
Available:https://doiorg/101175/JCLI38381

Bush KA, Smith GL, Lee RB, Young DF. The Earth Radiation Budget Experimetn (ERBE) 15-year data set. Proc. SPIE. 2003;4888. Remote Sensing Clouds and the Atmosphere VII.
Available:htpps://doi:101117/12463008

Hu S, Fedorov AV: The extreme El Niño of 2015-2016 and the end of global warming hiatus. Geophys. Res. Lett. 2017;44:3816-3824.
DOI: 101002/2017GL072908

Su J, Zhang R, Wang H. Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming. Sci. Rep. 2017;7:43735.

Brown PT, Li W, Jiang JH, Su H. Unforced surface air temperature variability and its contrasting relationship with the anomalous TOA energy flux at local and global spatial scales. J. Climate. 2016;29:925–940.
Available:https://doiorg/101175/JCLI-D-15-03841

Yang S, Li Z, Yu JY, Hu X, Dong W, He S. El Niño–Southern Oscillation and its impact in the changing climate. Nat. Sc. Rev. 2018;5:840–857.
Available:https://doiorg/101093/nsr/nwy046

Svensmark H. Influence of cosmic rays on earth’s climate. Phys. Rev. Lett. 1998;29(5):487–494.
Available:https://doiorg/101103/PhysRevLett815027

Ermakov V, Okhlopkov V, Stozhkov Y. Influence of cosmic rays and cosmic dust on the atmosphere and Earth’s climate. Bull. Russ. Acad. Sc. Ph. 2009;73:434-436.
Available:https://doiorg/103103/S1062873809030411

Scafetta N. Empirical evidence for a celestial origin of the climate oscillations and its implications.J. Atmos. Sol. Terr. Phys. 2010;72:951-970.
DOI: 101016/jjastp201004015

Marsh ND, Svensmark H. Low cloud properties influenced by cosmic rays. Phys. Rev. Lett. 2000;85:5004-5007.
Available:https://doiorg/101103/PhysRevLett855004.

Ollila A. Earth’s energy balance for clear cloudy and all-sky conditions. Dev. in Earth Sc. 2013;1:1-10.