Seasonal Variability of foE and Nocturnal Winter Anomaly in E-layer during Solar Cycles 21 and 22 at the Ouagadougou Station

Sawadogo Gédéon a, Nakolemda Roger a, Konaté Moustapha b and Nanéma Emmanuel a, c

a Laboratoire de Recherche en Energétique et Météorologie de l’Éspace (LAREME), Université Norbert Zongo, BP 376 Koudougou, Burkina Faso.

b Centre Universitaire de Gaoua, Université Nazi Boni, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso.

c Center National de la Recherche Scientifique et Technologique (CNRST), Institut de Recherche en Sciences Appliquées et Technologies (IRSAT), 03 BP 7047 Ouagadougou, Burkina Faso.

Authors’ contributions

This work was a collaborative effort among all authors. The author NE designed the study and wrote the protocol. Author SG conducted the data collection on IRI-2016 and performed the data processing. In addition, he wrote the first draft of the manuscript. Authors NR and KM managed the analyses of the study and made necessary corrections. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/PSIJ/2022/v26i230307

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/85827

Received 09 February 2022
Accepted 19 April 2022
Published 28 April 2022

ABSTRACT

This paper aims to study the variability of foE during two solar cycles 21 (SC21) and 22 (SC22) at Ouagadougou station (lat = 12.4°N, long = 358.5°E, local time (LT) = universal time (UT)), to give visibility on the behavior of foE in this station. We used International Reference Ionosphere (IRI-2016) to collect data from five (5) quiet days of each characteristic month of each season. This study reveals that in this station located at the ionospheric equator, the variability of foE follows the evolution of the sun intensity during the day. There is a correlation between foE and the solar cycle phase, the season, and the time of day. During the day [0500 LT-1900 LT], the foE profile does not show a winter anomaly, contrary to what is observed in the F2 layer at the minimum and maximum SC21 and SC22. On the other hand, a nocturnal winter anomaly was observed related to that observed in the F2 layer in the same periods. The study of foE at the Ouagadougou station will allow ionospheric physicists to have visibility on the seasonal variability of foE in this station.

*Corresponding author: E-mail: gedesawadogo@gmail.com;
Keywords: Equinoctial asymmetry; foE variability; season; solar cycle phase; winter anomaly.

ABBREVIATIONS
foE : E-layer Critical Frequency
foF2 : F2-layer Critical Frequency
NmE : E-layer Electron Density
NmF2 : F2-layer Electron Density
SC21 : Solar Cycle 21
SC22 : Solar Cycle 22
IRI : International Reference Ionosphere

1. INTRODUCTION
The ionosphere is a part of the Earth’s atmosphere that extends from about 50 km to 1000 km. It contains many particles among which we have nitrogen (N2) and dioxygen (O2), major particles. The interaction between X-rays and UV rays from the sun and the particles present in the ionospheric layer causes the ionization of these particles. During the day, the ionosphere presents a clear stratification (D, E, F1, and F2). During the night, F1 and F2 combine to form the F layer, the D layer disappears completely while E remains weakly ionized. This ionized part of the Earth's atmosphere has interested several researchers who have developed some topics such as modeling of the ionosphere, the study of intrinsic characteristics by direct or indirect sounding, and the observation of some events (asymmetry and anomaly, for example) [1,2,3,4].

The spontaneous, uncontrolled variation of ionospheric parameters influences the propagation of radio waves, the transmission and/or reception of signals by satellites, positioning systems (GPS for example), the monitoring of the planet Earth [5,6], etc. A concrete example, the determination of ionospheric parameters allows in the context of telecommunications, the determination of the maximum usable frequency (MUF) for an oblique propagation of radio waves [7]. The importance of a thorough study of the ionosphere is obvious, especially in the equatorial zone where several anomalies frequently occur. In the last decades, several scientists have started to investigate the intrinsic characteristics of the equatorial ionosphere [8,9,10,11,12]. Measurement stations such as Dakar (lat: 14.8°N; long: 13.426°E), Djibouti (lat: 11.5°N; long: 42.8°E); Korhogo (lat: 9.3°N; long: 13.56°E), Ouagadougou (latitude: 12.5°N; longitude: 135.5°) etc., have been privileged targets. These studies have allowed us to understand the behavior of the ionosphere in the face of solar irradiation, to determine phenomena such as equinoctial asymmetry and the absence or presence of winter anomalies [13,14,15]. These studies are international in scope, as they provide more information about the ionosphere in the equatorial zone and enrich the databases of mathematical model developers. Our study on the variability of the critical frequency of the E layer during geomagnetic quiet days in solar cycles 21 and 22, at the Ouagadougou station (latitude: 12.5°N; longitude: 35.8°; dip: 5.9°) is part of this logic. It will give visibility to the seasonal behavior of foE at this station, as studies on foE are rare at the Ouagadougou station.

2. METHODOLOGY

The International Reference Ionosphere (IRI) is the most widely used model in the scientific community for the determination of ionospheric parameters [16]. IRI is a semi-empirical model, developed and updated every four years (on average) by a team of researchers, it was initiated by the Committee on Space Research (COSPAR) and the International Union of Radiosciences (URSI) in the late 1960s [17]. The purpose of this work is to establish an international network standard for the specification of ionospheric parameters based on all available global data [18]. The IRI model is based on a photochemical approximation, which describes the E-region fairly well under quiet geomagnetic conditions. Thus, NmE (or foE) is estimated based on studies by Kouris and Muggleton [19,20] of the model they developed for the CCIR (1973). Based on a large database of ion-probe foE measurements as described by [21], four factors (A, B, C, and D) are used to calculate the foE values (Equation 1).

\[
foE^4 = A \cdot B \cdot C \cdot D
\] (1)

In this equation, A is a solar activity factor, B is a seasonal variation factor, C is a main latitude factor, D is a time-of-day factor.

\[
A = 1 + 0.0094 \times (C0V_{12} - 66) \text{ MHz} \quad (2)
\]

\[
B = \cos^m \chi_{noon} \quad (3)
\]

\[
m = \begin{cases}
-1.93 + 1.92 \cos \varphi \text{ pour } |\varphi| < 32^\circ \\
0.11 - 0.49 \cos \varphi \text{ pour } |\varphi| \geq 32^\circ
\end{cases} \quad (4)
\]

\[
C = \begin{cases}
23 + 116 \cos \varphi \text{ pour } |\varphi| < 32^\circ \\
92 + 35 \cos \varphi \text{ pour } |\varphi| \geq 32^\circ
\end{cases} \quad (5)
\]
the solar zenith angle at noon in each season, φ is the geographical latitude and χ_a the zenith angle, COV_{12} is the monthly average of the solar radio noise flux over 10.7 cm, expressed in 10^{-22} Wm$^{-2}$ Hz$^{-1}$ units. The minimum value of f_{oE} is given by equation 9 [22].

$$f_{oE_{\text{min}}} = 0.121 + 0.0015 \times (\text{COV}_{12} - 66) \text{ MHz}$$

Equation 11 allows us to calculate the deviation between March and September.

$$\text{déviation} \times 100 = \frac{f_{oE_{\text{March}}} - f_{oE_{\text{September}}}}{f_{oE_{\text{September}}}} \times 100$$

The IRI model allows the extraction of the different $f_{oE_{h,j}}$ values. It then becomes possible to determine the value of the critical frequency at time h ($f_{oE_{h}}$) by calculating the average value of the $f_{oE_{h,j}}$ parameters over the five quietest days for each characteristic month. We have extracted the numbers Rz in the site https://omniweb.gsfc.nasa.gov.

3. RESULTS AND DISCUSSION

3.1 Seasonal Variability of f_{oE}

For seasonal variability, we use the maximum phase data from solar cycle 22 with $R_z=142.6$. R_z is an indicator of solar activity. Solar cycle 22 started in 1985 and ended in 1996. This solar cycle had a duration of eleven (11) years. The selection of the quiet days, according to the pixel diagram is presented in the Table 1. The treatment of the data according to equation (10) allows us to have the curves.

The figures below show the variability of the E-layer critical frequency (f_{oE}) peak during the four seasons at the maximum phase of solar cycle 22. We first isolated each season (the first four figures), to see the f_{oE} evolution of each. Then, we confounded the f_{oE} variability of the four months (December, March, June, and September) that characterize the four seasons, to highlight the seasonal dependence of f_{oE} (Fig. 5). Finally, to highlight the existence or not of winter anomaly phenomena or equinoctial asymmetry, we compared the variability of f_{oE} in December and June (Fig. 6a) and the variability of f_{oE} in March and September (Fig. 6b), respectively.

The seasonal variability of E-layer critical frequency during the maximum phase of SC22 is depicted in Figs. 1, 2, 3 and 4.

<table>
<thead>
<tr>
<th>maximum Phase of SC22</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiet days</td>
<td>10,11,19,21, 29</td>
<td>4,10,16,17,31</td>
<td>16,17,20,21, 30</td>
<td>2,3,27,29,30</td>
</tr>
</tbody>
</table>
Fig. 1. foE profile in winter 1990

Fig. 2. foE profile in spring 1990

Fig. 3. foE profile in summer 1990

Fig. 4. Profile of foE in autumn 1990

Fig. 5. Variability of foE by season during maximum phase of CS22 (1990)
Fig. 6. a) Variability of \(f_0E \) in December and June; b) Variability of \(f_0E \) in March and September; c) Deviation between \(f_0E \) March/September. SC22 (1990)
All profiles show the same pattern with three main phases: constant, increasing, and decreasing. In Fig. 1, we can observe the variation of foE in winter, which evolves differently over three-time intervals. The period between [00:00h-05:00h] and [19:00h-24:00h] shows a constant evolution of foE. Although low, the E layer during this period remains ionized. This low value of foE reflects a total absence of solar radiation in this area since the ionization of the E layer depends mainly on the X and UV rays of the sun. The nocturnal ionization of the E layer according to D. F. Strobel, is related to five main factors: collisions between particles in their motion within the ionospheric plasma; Starlight (this source of ionization varies by a factor of 2±4 with latitude and time of year, with a maximum under the southern Milky Way and Orion regions, it is independent of solar activity); the radiation of the hydrogen and helium lines of the solar energy, scattered by resonance through the Earth's atmosphere on the night side; the solar radiation received at night by resonant scattering of the interplanetary gas and recombination in the F region (the photons produced by the recombination of the ionization of the F region can give an appreciable production at low latitudes, for heights near 150 km). The last three sources of nocturnal ionization vary with solar activity and produce most of the ionization at heights above 140 km [24,25,26]. The value of foE in the time interval between [0500LT-1200LT] increases progressively until reaching its maximum value at 1200LT, this is the increasing phase. We note that in this time interval, at the Ouagadougou station, the intensity of solar radiation increases, which induces an increase in the intensity of X-rays and UV, the main factors of ionization of the E layer. In this period, the E layer becomes an obstacle to the propagation of radio waves in a certain frequency range. The decreasing phase is that part of the curve included in the interval [1200LT-1900LT]. The critical frequency of the E layer during these moments undergoes a decrease. This decrease in foE is due to a progressive decrease in solar radiation intensity at the Ouagadougou station.

Figs. 2, 3 and 4, dealing with the variability of foE in spring, summer, and autumn respectively, have similar interpretations as the previous one. The difference is in the time intervals that constitute each phase in summer. Indeed the constant, increasing and decreasing phase are observed respectively in the time intervals [0000LT-0400LT] and [2000LT-2400LT], [0400LT-1200LT] and [1200LT-2000LT]. These time intervals show that in summer, foE appears earlier (at 0400 LT) and disappears (partially) later (2000 LT) than in other seasons. These results are more or less expected because foE has a dependence on the solar zenith angle (equation 8). If we observe globally (over the four seasons) the variability of foE at the maximum phase of solar cycle 22, we retain that the E layer exists formally between 0500LT and 1900LT and its highest value is recorded at 1200TL which is about 4MHz.

Fig. 5 compares the variability of foE in the four seasons. The variability of foE in winter represented in purple is lower than that in summer represented in red. This difference shows us that foE is highly dependent on the season. Looking at Fig. 6a, in the time interval between [0500LT-1900LT] the winter anomaly phenomenon, observed at the maximum phase of SC22 in foF2 study, is not observed in this study. Note that a winter anomaly is observed when the critical frequency values in winter are higher than those in summer. foE profiles for March (spring equinox) and September (summer equinox) do not overlap perfectly over the entire time interval of the day. For example, from 0500LT to 1000LT, foE values in September are higher than those in March; however, from 1600 LT to 1900LT, foE in March is higher than foE in September (Fig. 6b). This morphological difference, although visible, does not allow us to show the existence of an equinoctial asymmetry at the maximum phase of SC22 in the E-layer. This can be seen in Fig. 6c, which depicts low values of deviations between foE March and September.

3.2 Night-time Winter Anomaly in the E-Layer

It will be a question of presenting in this part of our work, the highlighting of a winter anomaly on NmE night at the ionospheric equator. We speak of a winter anomaly when the electron density is higher in winter than in summer. This phenomenon has already been observed in the F2 layer during the maximum phase of SC22 at Ouagadougou station and the E-layer during the night in the auroral zones [27,28].

The figures below show the peak electron density variability of the F2 layer (NmF2) and the variability of the electron density of the E layer (NmE). In Figs. 7a, 8a, and 9a, the discontinuous curve in red shows the variability of NmF2 in
December, and the continuous curve in blue shows the variability of Nm\textsubscript{F\texttwo} in June, which reflects the winter and summer seasons respectively. We note that in winter, Nm\textsubscript{F\texttwo} is higher than in summer over almost the entire time interval of the day.

Fig. 7. a) Variability of Nm\textsubscript{F\texttwo}, b) variability of Nm\text{E}: minimum phase of SC21

Fig. 8. a) Variability of Nm\textsubscript{F\texttwo}, b) variability of Nm\text{E}: maximum phase of SC21

Fig. 9. a) Variability of Nm\textsubscript{F\texttwo}, b) variability of Nm\text{E}: maximum phase of SC22
From Figs. 7b, 8b and 9b, from top to bottom, we can observe the night-time variability of NmE at the minimum and maximum phase of SC21 and maximum phase of SC22. For each of the three variabilities, the electron density is higher in winter than in summer. This observation is made for the Nm F2 variability during the same periods. The values used are those included in the period between [0000LT-0400LT] and [2000LT-2400LT]. In these time intervals, the variability of NmE drops too low values. The fact that the value of NmE is higher in winter than in summer reflects the phenomenon of winter night anomaly in E-layer at the Ouagadougou station. It is important to note that this phenomenon is not observed during the day. A winter anomaly in the F2 layer leads to a nocturnal winter anomaly in E-layer (Figs. 7a, 8a and 9a). We can thus link the nocturnal ionization of the E-layer to the recombination phenomenon in the F layer [26].

The sunspot number (Rz), the main indicator of solar activity, is a very important factor in the ionization process. Its increase induces a consequent ionization in the different layers of the ionosphere.

The observed winter night anomaly is because during these periods, the sunspot number, the main indicator of solar activity, is higher in winter than in summer, since among the five main factors of the night ionization of the E-layer, three are directly related to solar activity. These results show that the nocturnal E-layer ionization is more related to solar activity and particle motion in the ionosphere than to the season.

4. CONCLUSION

This study presents the variability of the critical frequency of the ionosphere E-layer during two solar cycles 21 (SC21) and 22 (SC22) at the Ouagadougou station, located in the low latitudes (equatorial zone). The profiles of the seasonal variability of the critical frequency have been presented. They show that during the night, the values of the critical frequency are low, reflecting the existence of a residual ionization whose origin is not related to X-rays and UV-rays coming directly from the sun but rather to collisions between particles in their movement within the ionospheric plasma, as well as some phenomena related to the activity of the sun. The disappearance of the E-layer during the night is highlighted in this study with the help of almost zero values of the critical frequency. This study also highlights the absence of a winter anomaly and an equinoctial asymmetry, during the maximum phase of solar cycle 22, in the period between [0500LT-1900LT], the period during which the E layer is strongly present. However, NmE in winter is higher than NmE in summer during the night at the minimum and maximum phase of solar cycle 21 and at the maximum phase of solar cycle 22, this highlights a winter anomaly at night in the E layer related to the recombination process of the F layer.

ACKNOWLEDGEMENTS

The authors are deeply grateful to the International Science Program (ISP) for its financial support.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

over the Thai station Chumphon with IRI. Advances in Space Research. 2015;55: 2131-2138.

© 2022 Gédéon et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/85827