The Impact of Embedded Nanoinclusion in Nanofiber Reinforced Composite
Published: 2013-07-13
Page: 438-451
Issue: 2013 - Volume 3 [Issue 4]
Waleed K. Ahmed *
ERU, Faculty of Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
Wail N. Al Rifaie
Department of Civil Engineering, Tikirit University, Tikrit, Iraq
*Author to whom correspondence should be addressed.
Abstract
Studying the influence of a nanoinclusion embedded in nanofiber reinforced composite alongside a nanofiber is the objective of the present investigation. The analysis is done based on 2D, linear elastic finite element through using finite element package ANSYS/Mechanical to explore the impact of the nanoinclusion on the mechanical behavior of the nanocomposite. Mainly, two scenarios are the major outlines of the study, first whenever the presence of the nanoinclusion is located at the longitudinal side of the nanofiber, whereas in the second case, the nanoinclusion is proposed to be along the transverse side of the nanofiber. The levels of the interfacial stresses, normal and shear along the nanofiber’s sides are estimated and discussed. The mechanical properties of the matrix and the nanofiber of the nanocomposite are considered be similar to the traditional well known materials, while for the modeling purposes of the stiffness of the nanoinclusion, is taken as 1/100 of the matrix stiffness. The nanocomposite is subjected to uniaxial tensile stress which is the main stress applied. The implications of the existence of the nanoinclusion on the failure of the nanocomposite due to increases of the interfacial stresses in the nanofiber/matrix line are discussed as well. It is shown through the analysis that the nanoinclusion has a great influence on the increase of the interfacial stresses along the sides of the nanofiber in a nanocomposite in different level and conditions according to the location of the nanoinclusion, and this essentially is considered as one of the main reasons of the anticipated nanocomposite failure.
Keywords: FEA, failure, interfacial, nanocompoiste, nanoinclusion, stresses