The Standard Model vs. Physical Facts

Main Article Content

E. Comay


Dynamical sectors of the Standard Model of particle physics are critically analyzed. It is proved that
quantum electrodynamics, quantum chromodynamics, and the electroweak theory are inconsistent
with fundamental physical principles. More than two examples apply to each of these theories, and
any of these examples substantiate the unacceptable status of the relevant theory. Unfortunately,
the mainstream particle physics literature ignores this situation and glorifies the Standard Model
as an excellent scientific theory.

Quantum electrodynamics, quantum chromodynamics, the electroweak theory, the standard model, critical analysis.

Article Details

How to Cite
Comay, E. (2020). The Standard Model vs. Physical Facts. Physical Science International Journal, 23(4), 1-12.
Original Research Article


Lord Kelvin. Nineteenth century clouds over the dynamical theory of heat and light.
Philos. Mag. 1901;2:1-40.

Rindler W. Special relativity. Oliver and Boyd, Edinburgh; 1966.

Schiff LI. Quantum mechanics. McGraw-Hill, New York; 1955.

Weinberg S. The quantum theory of fields. Vol. I. Cambridge University Press, Cambridge; 1995.

Griffiths D. Introduction to elementary particles. 2nd edition. Wiley-VCH, Weinheim; 2008.

Bjorken JD, Drell SD. Relativistic quantum fields. McGraw-Hill, New York; 1965.

Rohrlich F. Classical charged particle. World Scientific, New Jersey; 2007.

Peskin ME, Schroeder DV. An Introduction to quantum field theory. Addison-Wesley, Reading Mass; 1995.

Comay E. A new quantum paradox. Physical Science International Journal. 2016;12:1-6.

Landau LD, Lifshitz EM. The classical theory of fields. Elsevier, Amsterdam; 2005.

Jackson JD. Classical electrodynamics. 2nd edition. John Wiley, New York; 1975.

Comay E. Lorentz transformation of radiation 4-potential. Acta Phys. Pol. A.2018;133:1294-1298.

Comay E. On the significance of the fields’ energy-momentum tensor. Physical

Science International Journal. 2019;4:1-9.

Comay E. The rise and fall of the electromagnetic 4-potential. OALib.2018;5:1-18.

Wong SSM. Introductory nuclear physics. John Wiley, New York: 1998.

Haken H, Wolf HC. Molecular physics and elements of quantum chemistry. Springer, Berlin; 2004. 2nd edition.

Wilczek F. Hard-core revelations. Nature. 2007;445:156-157.

Ishii N, Aoki S, Hatsuda T. Nuclear Force from Lattice QCD. Phys. Rev. Lett. 2007;99:022001-1-022001-4.


Yukawa H. On the Interaction of elementar particles. I. Progress of Theoretical Physics Supplement. 1955;1:1-10.

Aubert JJ, et. al. The ratio of the nucleon structure functions FN for iron and

deuterium. Phys. Lett. B. 1983;123:275-278.

Pendry JB. The electronic structure of liquids. J. Phys. C. 1980;13:3357-3368.

Malace S, Gaskell D, Higinbotham DW, Cloet C. The challenge of the EMC

effect: Existing dataand future directions.International Journal of Modern Physics E.2014;23:1430013-1-1430013-35.

Perkins DH. Introduction to high energy physics. Addison-Wesley, Menlo Park CA;

Halzen F, Martin AD. Quarks, Leptons.An introductory course in modern particle physics. John Wiley, New York; 1984.

Thomson M. Modern particle physics.Cambridge University Press, Cambridge;Tanabashi M, et al. (Particle Data Group),
Review of particle physics. Phys.
Rev. D 2018;98:030001-031898, and 2019 update.

Krisch AD. Hard collisions of spinning protons: Past, present and future. The
European Physical Journal A. 2007;31:417-423

Comay E. The regular charge-monopole theory and strong interactions. Elect. J. Theor. Phys. 2012;9:93-118.

Comay O. Science or fiction? The phony side of particle physics. S. Wachtman’s Sons, CA; 2014.

Weinberg S. The quantum theory of fields. Vol. II. Cambridge University Press, Cambridge; 1995.

Berestetskii VB, Lifshitz EM, Pitaevskii LP. Quantum electrodynamics. Pergamon, Oxford; 1982.

Srednicki M. Quantum field theory.

Cambridge University Press, Cambridge; Bilenky SM. Neutrino in standard model and
beyond. Phys. Part. Nuclei. 2015;46:475-496.
Available: Salam A. Nobel Lecture.

Formaggio JA, Zeller GP. From eV to EeV: Neutrino cross sections across

energy scales. Reviews of Modern Physics. 2012;84:1307-1341.

Comay E. Relativistic properties of a lagrangian and a hamiltonian in quantum

theories. Physical Science International Journal. 2019;23:1-9.

Bauer TH, Spital RD, Yennie DR, Pipkin FM. The hadronic properties of the photon
in high-energy interactions. Rev. Mod. Phys.1978;50:261-436.

Wigner E. On unitary representations of the inhomogeneous Lorentz group. Annals of
Mathematics. 1939;40:149-204.

Schweber SS. An introduction to relativistic quantum field theory. Harper & Row, New
York. 1964; 44-53.

Sternberg S. Group theory and physics. Cambridge University Press, Cambridge. 1994;143-150.

Das A, Ferbel T. Introduction to nuclear and particle physics. Second Edition. World
Scientific Publishing, New Jersey; 2003.

A CERN publication. July 4, 2012.

A Fermilab pablication; 2011.

A Fermilab pablication. Republished in