Modeling of Energy Savings Performed by a Barbecue Oven Isolated with Terracotta Bricks

Main Article Content

Gaël Lassina Sawadogo
Serge Wendsida Igo
Abdoulaye Compaore
Drissa Ouedraogo
David Namoano
Joseph Dieudonne Bathiebo

Abstract

This work is devoted to a numerical study of the energy savings achieved by an oven insulated with terracotta bricks compared to an uninsulated oven. The numerical methodology is based on the nodal method and the transfer equations were obtained by making an energy balance on each node. The equations were then discretized using an implicit scheme with finite differences and solved by the Gauss algorithm. Numerical results validated by the experiment show that the insulation of the oven with terracotta bricks considerably reduces the energy losses through the walls, but the reduction level varies according to the thickness of the bricks. The optimal thicknesses of the bricks are between 3 and 4 cm, which corresponds to energy savings of between 60 to 70% compared to the uninsulated oven. The energy saved increases the energy efficiency of the oven from 15-17% to 25-29%.

Keywords:
Barbecue oven, thermal insulation, terracotta bricks, energy savings, modeling

Article Details

How to Cite
Sawadogo, G. L., Igo, S. W., Compaore, A., Ouedraogo, D., Namoano, D., & Bathiebo, J. D. (2020). Modeling of Energy Savings Performed by a Barbecue Oven Isolated with Terracotta Bricks. Physical Science International Journal, 24(5), 8-21. https://doi.org/10.9734/psij/2020/v24i530190
Section
Original Research Article

References

Sakiru AS, Usama AM, Gerald GGG, Muhammad S. The impact of biomass energy consumption on pollution: Evidence from 80 developed and developing countries. Environmental Science and Pollution Research. 2018;25:22641–22657.

DOI:https://doi.org/10.1007/s11356-018-2392-5

Keles S, Bilgen S, Kaygusuz K. Biomass energy source in developing countries. Journal of Engineering Research and Applied Science. 2017;6(1):566-576.

Melike B, Fulya Ö. Woody biomass energy consumption and economic growth in Sub-Saharan Africa, Istanbul Conference of Economics and Finance, ICEF. Istanbul, Turkey. Procedia Economics and Finance. 2015;38:287–293.

DOI:https://doi.org/10.1016/S2212-5671(16)30202-7

Matthew FC, Caradee YW, Francois V, Helem R, Fiona S, Barend E. Impacts of climate change on health and wellbeing in South Africa. International Journal of Environmental Research and Public Health. 2018;15(9):2-14.

DOI:https://doi.org/10.3390/ijerph15091884

Pyhälä A, Fernandez-Llamazares A, Lehvävirta H, Byg A, Ruiz-Mallén I, Salpeteur M, Thornton TF. Global environmental change: Local perceptions, understandings and explanations. Ecology and Society. 2016;21(3):25.

DOI:https://doi.org/10.5751/ES-08482-210325

Stephane H, Marianne F, Edward BB. Poverty and climate change: Introduction. Environment and Development Economics. 2018;23(3):217-233.

DOI:https://doi.org/10.1017/S1355770X18000141

Butt EW, Rap A, Schmidt A, Scott CE, Pringle KJ, Reddington CL, et al. The impact of residential combustion emissions on atmospheric aerosol, human health, and climate. Atmos. Chem. Phys. 2016;16: 873–905.

DOI:https://doi.org/10.5194/acp-16-873-2016

Smith KR, Samet JM, Romieu I, Bruce N. Indoor air pollution in developing countries and acute lower respiratory infections in children. Thorax. 2000;55: 518–532.

DOI:https://doi.org/10.1136/thorax.55.6.518

Charles WS. Black carbon: The dark horse of climate change drivers. Environ Health Perspect. 2011;119(4):A172–A175.

Ram PK, Alok P, Krishan K. A review on the atmospheric Non Methane Hydrocarbons (NMHCs) study in India. Current World Environment. 2017;12(2): 278-287.

World Health Organization. World Health Statistics 2018: Monitoring health for the SDGs, sustainable development goals. WHO; Geneva, Switzerland; 2018.

MacCarty N, Ogle D, Still D, Bond T, Roden C. A laboratory comparison of the global warming impact of five major types of biomass cooking stoves. Energy Sustain Dev. 2008;12(2):56–65.

DOI:https://doi.org/10.1016/S0973-0826(08)60429-9

Anthony AB, Gilbert N, Sarah K, Yonah KT. Design of an improved cooking stove using high density heated rocks and heat retaining techniques. Journal of Renewable Energy. 2018;18:1-9.

DOI: https://doi.org/10.1155/2018/9620103

Kuhe A, Iortyer HA, Iortsor A. Performance of clay wood cook stove: An analysis of cost and fuel savings. Journal of Technology Innovations in Renewable Energy. 2014;3:94-98.

DOI:https://doi.org/10.6000/1929-6002-2014.03.03.2

Komi AA, Koffi S, Kokou N, Tchamou S, Kossi N. Study and design of an improved clay conical stove. International Journal of Recent Scientific Research. 2018;9(12): 29909-29915. DOI:https://dx.doi.org/10.24327/ijrsr.2018.0912.2958

Abanda FH, Manjia MB, Cole E, Mempouo B. The potential of efficient improved mud-brick cookstove in Cameroon: An exploratory study. Environmental Manage-ment and Sustainable Development. 2015;4(1):106-119.

DOI:https://doi.org/10.5296/emsd.v4i1.6715

Sawadogo GL, Igo SW, Compaoré A, Ouedraogo D, Chesneau X, Zeghmati B. Experimental and numerical study of energy losses in a barbecue oven in Burkina Faso. Open Journal of Energy Efficiency. 2020;9(1):31-52.

DOI:https://doi.org/10.4236/ojee.2020.91003

Amkpa JA, Nur AB. Thermal conductivity of Aloji fireclay as refractory material. International Journal of Integrated Engineering. 2016;8(3):16-20.

DOI:https://doi.org/10.5296/emsd.v4i1.6715

Olasupo OA, Borode JO. Development of insulating refractory ramming mass from some Nigerian refractory raw materials. Journal of Minerals & Materials Characterization & Engineering. 2009;8(9): 667-678.

DOI:https://doi.org/10.4236/jmmce.2009.89058

Aurélie MICHOT. Caractéristiques thermophysiques de matériaux à base d’argile: Evolution avec des traitements thermiques jusqu’à 1400°C. Thèse de Doctorat, Université de LIMOGES; 2008.

Pierre MEUKAM. Valorisation des briques de terre stabilisées en vue de l’isolation thermique des bâtiments. Thèse de doctorat de 3ème cycle, en co-tutelle entre l’Université de Cergy Pontoise et l’Université de Yaoundé I; 2004.

Compaore A. Etude des performances thermiques d'un habitat type du Burkina Faso. Application: Contribution à la mise en place d'une règlementation thermique. Thèse de doctorat de l'Université Ouaga I Pr Joseph KI ZERBO; 2018.

McCarty NA, Bryden KM. A generalized heat-transfer model for shielded-fire. Energy for Subtainable Development. 2016;33:96-107.

DOI:https://doi.org/10.1016/j.esd.2016.03.003

Eyglunent B. Manuel de thermique- Théorie et pratique, Hermès- Lavoisier; 2003.

Adams M. Transmission de la chaleur, Dunod. Paris; 1964.

Kshirsagar MP, Kalamkar VR. A mathematical tool for predicting thermal performance of natural draft biomass cookstoves and identification of a new operational parameter. Energy. 2015;93: 188-201. DOI:https://doi.org/10.1016/j.energy.2015.09.015

Ivanova SM. Estimation of background diffuse irradiance on orthogonal surfaces under partially obstructed anisotropic sky Part I – Vertical surfaces. Solar Energy. 2013;95:376–391.

DOI:https://doi.org/10.1016/j.solener.2013.01.021

Ramírez-Faz J, Casares FJ, Lopez-Luque R. Development of synthetic hemispheric projections suitable for assessing the sky view factor on vertical planes. Renewable Energy. 2015;74:279-286.

DOI:https://doi.org/10.1016/j.renene.2014.08.025

Boubghal SOA. Etude paramétrique d’un capteur solaire plan à air destiné séchage. Revue des Energies Renouvelables SMSTS’08 Alger. 2008;255–26.

Khummongkol P, Wibulswas P, Bhaitacharya SC. Modeling of a charcoal cook stove. Energy. 1988;13:813-821.

DOI:https://doi.org/10.1016/0360-5442(88)90086-2

Global Alliance for Clean Cookstoves. Handbook for biomass cookstove research, design and development: A practical guide to implementing recent advances. Massachusetts Institute of Technology D-lab; 2017.