Edge Detection and Depth to Magnetic Source Estimation in Part of Central Nigeria

Main Article Content

Mam D. Tawey
Abbass A. Adetona
Usman D. Alhassan
Abdulwaheed A. Rafiu
Kazeem A. Salako
Emmanuel E. Udensi

Abstract

High-resolution aeromagnetic data covering an area of 24, 200 km2 in north central Nigeria has been acquired and analyzed with the aim of carrying out trend analysis, edge detection (structural delineation) and depth to magnetic source estimation using reduce to the pole (RTP), horizontal gradient magnitude (HGM), center for exploration targeting plug-in (CET), 3D Euler deconvolution and source parameter imaging (SPI) techniques. Trend analysis was applied to the RTP data to delineate structures that have dissected the area. The 3D Euler deconvolution and HGM were correlated by plotting the estimated Euler solutions for a structural index of one (SI=1) on HGM map and the resulting map produced have shown that both methods can contribute in the interpretation of the general structural framework of the study area. The structural delineation based on HGM and CET maps showed that two predominant trends (ENE-WSW) and (WNW-ENE) have affected the area. The trend/depth/contacts of these faults were classified into four groups: Faults <150 m, 150 m - 300 m, 300m - 450 m which are the most predominant fault system based on Euler solutions with a structural index of one (SI=1) and those deeper than 450 m while the result of source parameter imaging (SPI) revealed a depth to source varying from 58 m specifically for areas with shallow depth to the magnetic source to those from deeper source occurring at 588.153m depth especially the south-central portion and the south-eastern portion of the study area.

Keywords:
RTP, HGM, CET, deconvolution, SPI.

Article Details

How to Cite
Tawey, M. D., Adetona, A. A., Alhassan, U. D., Rafiu, A. A., Salako, K. A., & Udensi, E. E. (2020). Edge Detection and Depth to Magnetic Source Estimation in Part of Central Nigeria. Physical Science International Journal, 24(7), 54-67. https://doi.org/10.9734/psij/2020/v24i730203
Section
Original Research Article

References

Kearey P, Brook SM, Hill I. Introduction to geophysical exploration. 3rd Edition. Blackwell Scientific Publication, Oxford. 2002;156-159.

Clark D. Magnetic properties of rocks and minerals. AGSO Journal of Australian Geology and Geophysics. 1997;17(2):83-103.

Murray AS, LM Tracey. Best practice in gravity surveying, Geoscience Australia; 2004. Available:http://www.ga.gov.au/pdf/RR0027.pdf

Grauch VJS, Millegan PS. Mapping intrabasinal faults from high resolution aeromagnetic data: The Leading Edge. 1998;17(1):53-55.

Gunn P. Airborne Magnetic and Radiometric Survey. AGSO Journal of Australian Geology and Geophysics. 1997;17(2):216.

Reeves CV, Reford SW, Milligan PR. Airborne Geophysics: Old methods, new images in Gubbins, A.G.(ED). Proceedings of Exploration 97, Fourth Decennial International Conference on Mineral Exploration. 1997;13-30.

Reeves CV. Continental scale and global geophysical anomaly mapping: ITC Journal. 1998;2: 91-98.

Milligan PR, Gunn PJ. Enhancement and presentation of airborne geophysical data. AGSO Journal of Australian Geology and Geophysics. 1997;17(2):64–774.

Baranov V. A new method of interpretation of aeromagnetic maps: Pseudogravimetric anomalies. Geophysics. 1957;22:259-283.

Bhattacharyya BK. Two-dimensional harmonic analysis as a tool for magnetic interpretation. Geophysics. 1965;30:829-857

Hogg S. GT-Gradient tensor gridding Available:http://www.shageophysics.com/

Phillips JD. Locating Magnetic Contacts; A Comparison of the Horizontal Gradient, Analytic Signal and Local Wavenumber Methods: Society of Exploration Geophysicists, Abstracts with Programs, Calgary. 2000;402–405.

Grauch VSJ, Cordell L. Limitations of deter mining density or magnetic boundaries from the horizontal gradient of gravity or pseudogravity data. Short note, Geophysics. 1987;52(1):118–121.

Holden EJ, Dentith M, Kovesi P. Towards the automatic analysis of regional aeromagnetic data to identify regions prospective for gold deposits”, Computers & Geosciences. 2008;34(11): 1505–1513.

Core D, Buckingham A, Belfield S. Detailed structural analysis of magnetic data done quickly and objectively, SGEG Newsletter; 2009.

Reid AB, Allsop JM, Granser H, Millet AJ, Somerton IW. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics. 1997;55:80-91.

Thurston JB, Smith RS. Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI method. Geophysics. 1997;62(3):807–813.

Thurston J, Guillon JC, Smith R. Model-independent depth estimation with the SPITM method: 69thAnnual International Meeting, SEG, Expanded Abstracts. 1999;403–406.

Thurston JB, Smith RS, Guillon JC. A multi-model method for depth estimation from magnetic data. Geophysics. 2002;67(2):555–561.

Daniel E, Jimoh R, Lawal K. Delineation of Gold Mineral Potential Zone Using High Resolution Aeromagnetic Data Over Part of Kano State, Nigeria, J Geol Geophys. 2019;8:464. DOI: 10.35248/2381-8719.464

Andrew J, Alkali A, Salako KA, EE Udensi. Delineating Mineralisation Zones within the Keffi- Abuja Area Using Aeromagnetic Data. Journal of Geography, Environment and Earth Science International; 2018. DOI: 10.9734/JGEESI/2018/37052

Balogun OB. Tectonic and structural analysis of the Migmatite–Gneiss–Quartzite complex of Ilorin area from aeromagnetic data NRIAG Journal of Astronomy and Geophysics; 2019. Available:https://doi.org/10.1080/20909977.2019.1615795

Okwokwo, O. I., Adetona AA, Adewumi T, Adediran SO. Interpretation of high resolution aeromagnetic data to determine sedimentary thickness over part of Bida Basin, North Central Nigeria: Journal of Geology and Mining Research. 2018;10(6):72-80. DOI: 10.5897/JGMR2018.0293

Salako KA. Depth to Basement Determination Using Source Parameter Imaging (SPI) of Aeromagnetic Data: An Application to Upper Benue Trough and Borno Basin, Northeast, Nigeria. Academic Research International. 2014;5(3). ISSN: 2223-9944, eISSN: 2223-9553

Megwara JU, Udensi EE. Structural Analysis Using Aeromagnetic Data: Case Study of Parts of Southern Bida Basin, Nigeria and the Surrounding Basement Rocks. Earth Science Research. 2014;3(2). DOI: 10.5539/esr.v3n2p27

Obaje NG. Geology and Mineral Resources of Nigeria, Berlin: Springer-Verlag, Heidelberg. 2009;1-221.

NGSA. Geology and Structural Lineament Map of Nigeria; 2006.

McCurry P. Pan-African Orogeny in Northern Nigeria. Geol. Soc. Am. Bull. 1971a;82:3251-3262.

Rahaman MA. Progressive polyphase metamorphism in pelitic schists around Aiyetoro, Oyo State, Nigeria. J. Min. Geol. 1976a;13:33-44.

Grant NK. Structural distinction between metasedimentary cover and underlying basement in 600 M.Y. old Pan-African domain. Geol. Soc. Am. Bull. 1678;89:50-58.

Ekweme BN. Strctural orientation and precambrian deformational episode of Uwet area, Oban Massif, S. E. Nigeria. Precambrian Res. 1987;34:269-289.

Ekwueme BN. Structural features of Obudu Plateau, Bamenda Massif, Eastern Nigeria: Preliminary interpretation. J. Min. Geol. 1994;30(1):45-59.

Wright JB. Geology and mineral resources of West Africa. George Allen and Unwin, London. 1985;187.

McCurry P. Plate tectonics and the Pan-African Orogeny in Nigeria. Nature. 1971b;229:154-155.

Falconer JD. The Geology and Geography of Northern Nigeria. Macmillian, London; 1911.

Haruna IV. Review of the Basement Geology and Mineral Belts of Nigeria. Journal of Applied Geology and Geophysics (IOSR-JAGG) e-ISSN: 2321– 0990, p-ISSN: 2321–0982. 2017;5 (1)Ver. I:37-45

Lou Y, Xue DJ, Wang M. Reduction to the Pole at the Geomagnetic Equator. Chinese Journal of Geophysics. 2010;53(6):1082-1089.

Li X. Magnetic reduction-to-the-pole at low latitudes; 2008.

Yaoguo L, Douglas WO. Stable reduction to the pole at the magnetic equator Geophysics. 2001;66(2):571–578.

Reynolds JM. An introduction to Applied and Environmental Geophysics, John Wiley and Ltd. Bans Lane, Chichester. 1997;124-13.

Telford WM, Geldart LP, Sherriff RE, Keys DA. Applied geophysics. Cambridge: Cambridge University Press. 1990;860.

Thompson DT. EULDPH: a new technique for making computer-assisted depth estimates from magnetic data. Geophysics. 1982;47:31–37.

Salawu NB, Olatunji S, Orosun MM, Abdulraheem TY. Geophysical inversion of geologic structures of Oyo Metropolis, Southwestern Nigeria from airborne magnetic data. Geomech Geophys Geo-energy Geo-Resour. 2019;5:143–157.

El-Akrab AM, Khalifa MO, Fraihy WD. Aeromagnetic data interpretation for delineation of the subsurface structures of the area east Qena provenance, Central Eastern Desert, Egypt; 2016. [ISSN: 2394-5710]

Amar N, Khattach D, Azdimousa A, Chourak M, Jabaloy A, Manar A, Amar M. Structure and peridotite of Gibraltar arc southern bloc: gravimetric and aeromagnetic evidences Arabian Journal of Geosciences; 2015. DOI: 10.1007/s12517-015-1879-3

Saada SA. Edge detection and depth estimation from magnetic data of wadi Araba, eastern desert- Egypt. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG). 2015;3(6);33-45 e-ISSN: 2321–0990, p-ISSN: 2321–0982

Smith RS, JB Thurston, TF Dai, IN MacLeod. iSPI —- the improved source parameter imaging method: Geophysical Prospecting. 1998;46:141–151.

Grant FS, West GF. Interpretation theory in Applied Geophysics. New York: McGraw-Hill; 1965.

Telford WM, Geldart LP, Sheriff RE. Applied Geophysics, 2nd Edition, Cambridge University Press, USA. 1998;770.

Reeves C. Aeromagnetic surveys, principle practice and interpretation. Geosoft E-Publication; 2005. Available:www.geosoft.com/media/uploads/resources/technical/aeromagnetic_survey_Reeeves.pdf

Isles DD, Rankin LR. Geological interpretation and structural analysis of aeromagnetic data. TGT Consulting/Geointerp Unpublished workshop manual Fugro Gravity and Magnetic Services. Houston, USA: Fugro; 2011