Refutation of the Quantum Theory Principles: Theorem

Main Article Content

V. E. Shapiro

Abstract

The theorem presented challenges the quantum mechanics and its relativistic theory generally posited as an ultimate unifying guideline of nature in fundamental and applied matters, refutes this theory, any bridges from it to the realm. We build the evidence on the rigorous statistical criteria
and arguments of compatibility at the interfaces not adduced previously against the theory. It calls in question the Born rule, particle-wave doublethink, probability sense of the quantum theory, any bridges from the theory to both Lagrangian and nonholonomic mechanics. The argumentation given to the matter of ambient noise impact at the interfaces by meaningful statistical methods paves the way towards the correct principles of causality, connectedness, robustness .

Keywords:
Quantum mechanics, Statistical mechanics, Quantum relativistic theory, Vortex physics.

Article Details

How to Cite
Shapiro, V. E. (2020). Refutation of the Quantum Theory Principles: Theorem. Physical Science International Journal, 24(9), 1-7. https://doi.org/10.9734/psij/2020/v24i930210
Section
Original Research Article

References

Louis de Broglie. Will quantum physics remain indeterministic, in the revolution in physics: A non-mathematical survey of quanta. Noonday Press. 1953;237.

Dirac PAM. The principles of quantum mechanics. 4th Edn, Oxford Clarendon Press; 1974.

Von Newmann J. Mathematical foundations of quantum mechanics. Princeton University Press; 1955.

Feynman RP. Space-time approach to quantum mechanics. Rev. Mod. Phys. 1948;20:367-387.

Shapiro VE. Principles of statistical mechanics: The energy duality. Phys.Lett. A. 2008;372:6087-6093.

Shapiro VE. Systems near critical point under multiplicative noise and the concept of effective potential. Phys Rev E.1993;48:109-120.

Shapiro VE, Loginov VM. Formulae of differentiation and their use for solving stochastic differential equations. Physica A.1978;91:563-574.

Shapiro VE, Loginov VM. Dynamic systemsunder random influences. Simple toolsof analysis. Monograph (in Russian),Academic Press Nauka, Novosibirsk; 1983.

Shapiro VE. Motion in rapidly oscillating resonant fields and vortical Raman phenomena. Journ. Eksp. Teor. Fiz.1985;89:1957-1973. (Sov. Phys. JETP.1985;62(6)).

Shapiro VE. Combination resonances ofvortical type. Phys. Lett. A. 1988;129:62-66.

Shapiro VE. The electromagnetic forcefor vortical optics and traps for particles.Hyperfine Interactions. 1993;81:223-226.

Hertz HR. Der Prinzipien der Mechanikin neuem Zusammenhange dargestelt,Barth, Leipzig, (1894); English transl. Macmillan, London, 1899; reprint DoverNewYork(1956).

Yu. I. Neimark, Fufaev NA. Dynamics of nonholonomic systems, Amer. Math. Soc.1972;33. Transl. from Russian Dinamika Neholononih System. Nauka, Moscow;1967.

Appell P. Sur une forme nouvelle desequations de la dynamique. C. R. Acad. Sci.Paris. 1899;129:459-460.