Dynamics of the Optical Pulse in a Nonlinear Medium: Approach of Moment Method Coupled with the Fourth Order Runge-Kutta Method

Main Article Content

Fessomon Koki
Gaston Edah
Minadohona Maxime Capo- Chichi
Gaetan Finagnon Djossou ´
Camille Elloh
Marc Ayela

Abstract

In this paper, we considered the nonlinear Schrodinger equation and applied the moment method ¨ in order to investigate the evolution of pulse parameters in nonlinear medium. This mathematical model described the effects of cubic nonlinear and the nonlinear dispersion terms on the soliton.  The application of the moment method leads to variational equations that is integrated numerically by the fourth order Runge-Kutta method. The results obtained shows the variations of some important parameters of the pulse namely the energy, the pulse position, the frequency shift, the chirp and the width. It reveals the effects of the nonlinear dispersion and nonlinear cubic terms on each parameter on the pulse. The moment method is appropriate to study the dynamics of the
optical pulse in a nonlinear medium modelled by the nonlinear Schrodinger equation.

Keywords:
Moment method, nonlinear Schrodinger equation. ¨

Article Details

How to Cite
Koki, F., Edah, G., Chichi, M. M. C.-, Djossou ´G. F., Elloh, C., & Ayela, M. (2020). Dynamics of the Optical Pulse in a Nonlinear Medium: Approach of Moment Method Coupled with the Fourth Order Runge-Kutta Method. Physical Science International Journal, 24(9), 8-17. https://doi.org/10.9734/psij/2020/v24i930211
Section
Original Research Article

References

Cao Rui, Zhang Jia. Trial function method and exact solutions in the generalized Schrodinger equation with ¨ time-dependent coefficient. Chin. Phys. B. 2013;22(10):100507.

Jayanthi Santhanam. Applications of the moment method to optical communications systems: Amplifier noise and timing jitter.University of Rochester; 2004.

Agrawal GP. Applications of nonlinear fiber optics. Academic, San Diego; 2001.

Kodama Y, Hasegawa A. Nonlinear pulse propagation in a monomode dielectric guide. IEEE Journal of Quantum Electronics. 987;23:510-524.

Mamyshev PV, Chernikov SV. Ultrashortpulse propagation in optical fibers. Opt. Lett. 1990;15:1076-1078.

Agrawal GP. Fiber-optic communication systems. Wiley; 1997.

Agrawal GP. Fiber-Optic communication systems. 3rd ed. Wiley. New York; 2002.

Agrawal GP. Nonlinear fiber optics. Academic Press; 2007.

Lin Q. Oskar Painter J, Agrawal Govind P. Nonlinear optical phenomena in silicon waveguides: Modelling and applications. Optics Express. 2007;15.

Hasegawa A, Tappert FD. Appl. Phys. Lett. 1973;23:142.

Mollenauer LF, Stolen RH, Gordon JP. Phys. Rev. Lett. 1980;45:1095.

Konar S, Sengupta AJ. Opt. Soc. Am. B. 1994;11:1644.

Cao LV, Bui DT, Piotr G, Nguyen VH, Doan HS. Propagation of ultrashort pulses in a noninear Medium. Computational Methods

in Science and Technology; 2010. Special Issue.

Adebisi AF, Peter OJ, Ayoola TA, Oguntolu FA, Ishola CY. Approximate solution of typhoid fever model by variational iteration

method. Journal of Science, Technology and Education (JOSTE). 2018;6(3).

Olumuyiwa James Peter. Transmission dynamics of fractional order brucellosis model using caputofabrizio operator. International Journal of Differential Equations; 2020.

Anjan Biswas. Conservation laws for optical solitons with anti-cubic and generalized anti-cubic nonlinearities. Optik, International

Journal for Light and Electron Optics 176; 2018.

Biazar J, Ghazvini H. Exact solution for nonlinear Schrodinger equations by ¨ He’s perturbation method. Phys. Lett. A. 2008;386:79-84.

Belanger N. Etude des moments de l’equation de Schr ´ odinger non lin ¨ eaire avec ´ perte. Universite de Laval; 1996. ´

Gorji M, Ganji DD, Soleimani S. New application of He’s perturbation method. Int. J. Nolinear Sei. 2007;8:319-328.

He JE. New interpretation of homotopy perturbation method. Int. J. Modern Phys. B20.

Sadighi A, Ganji DD. Analytic treatment of linear and nonlinear. Optics Express. 2007;15.

He JH. Wu XH. Variational iteration method: New developpment and applications. Comput. and Math. with Appl. 2007;54:881-

Sweilam NH. Variational for solving cubic nonlinear Schrodinger equations. J. of ¨ Comput. and Appl. Math. 2007;207:155- 163.

Sweilam NH, Al-bar RF. Variational iteration method for coupling nonlinear Schrodinger ¨ equations. Comput. and Math. with Appl.;54:993-999.

Turget O, Ahmet Y. Application of He’s semi-inverse method to the nonlinear Schrodinger equation with applications. ¨2007;54:1039-1042.

Edah G, Adanhounme V, Kanfon A, Gu ` edj ´ e, ´ Hounkonnou N. Pulse propagation in a nonlinear medium. Open Phys. 2014;13:151-

Guanmao Z, Xiaoping Z. Rapid numerical difference recurent formula of nonlinear Schrodinger equation and its applications. ¨

Optics Communications. 2007;270:379-383.

Pare C, Belanger P. A1939 Opt. Commun. ´ 168103.

Ablowitz MJ, Clarkson PA. Solitons, Nonlinear evolution equations, and inverse scatterring. Cambridge University Press, New York; 1991.

Fisher RA. Bischel WK. Numerical studies of the interplay between self-phase modulation and dispersion for intense plane-wave laser pulses. J. Appl. Phys.1975;46.

Butcher JC. Numerical method for ordinary differentials equations. Second Edition. chapter 3: Runge-Kutta Method.

Mir Asma. Othman WAM, Wong BR, Anjan Biswas. Chirped optical Gausson perturbation with quadratic-cubic nonlinearity by collective variables. Optical and Quantum Electronics; 2019.

Marija V, Daniela M, Milivoj B, Qin Zhou, Seithuti PM, Anjan Biswas. Super-sech soliton dynamics in optical metamaterials

using collectives variables. FACTA UNIVERSITATIS Series: Electronics and Energetics Vol. 2017;30(1):39-48.

Nakkeeran K, Wai PKA. Generalized projection operator method to derive the pulse parameters equations for the nonlinear Schrodinger equation. Optics ¨ Communications; 2004