A Critical Study of Quantum Chromodynamics and the Regular Charge-Monopole Theory
Article Sidebar
Main Article Content
Abstract
The compatibility of the strong interaction theory called Quantum Chromodynamics (QCD) with relevant experimental data is critically examined. The clear advantage of the Regular ChargeMonopole Theory over QCD is explained. An analysis of new data provides further support for this claim. The paper points out several specific effects that illustrate this conclusion: the hard photon-nucleon interaction, the striking difference between the high energy electron-proton and proton-proton cross section, the peripheral location of the proton’s antiquark, the strong CP problem, the quite large amount of the ss ¯ pair in the proton, the excess of the proton’s d¯antiquarks over its u¯ antiquarks, and the spin-dependence of high energy polarized proton-proton scattering. These problematic issues are in accordance with M. Gell-Mann’s recently published qualms about the QCD merits.
Article Details
References
Bjorken JD, Drell SD. Relativistic quantum Fields. McGraw-Hill, New York; 1965.
Halzen F, Martin AD. Quarks and Leptons, an introductory course in modern particle physics. John Wiley, New York; 1984.
Weinberg S. The quantum theory of fields. Cambridge University Press, Cambridge. 1995;II.
Peskin ME, Schroeder DV. An introduction to quantum field theory. Addison-Wesley, Reading Mass; 1995.
Comay E, Nuovo Cimento. 1984;80B:159.
Comay E, Nuovo Cimento. 1995;110B:1347.
Comay E. A regular theory of magnetic monopoles and its implications. Published in: Has the last word been said on classical
electrodynamics? Editors: Chubykalo A, Onoochin V, Espinoza A, Smirnov-Rueda R. Rinton Press, Paramus, NJ; 2004.
Comay E, Elect J. Theor. Phys. 2012;9:93- 118. Availabe:http://www.ejtp.com/articles/- ejtpv9i26p93.pdf
Comay O. Science or Fiction? The phony side of particle physics. S. Wachtman’s Sons, CA; 2014.
Fritzsch H. CERN Courier; 2012. Availabe:http://cerncourier.com/cws/- article/cern/50796.
Wolfram S. Remembering Murray GellMann. Availabe:https://writings.stephenwolfram.com/2019/05/-remembering-murraygell-mann-1929-2019-inventor-of-quarks/
Goddard P, Olive DI. Rep. Prog. Phys. 1978;41:1357.
Jackson JD. Classical electrodynamics. John Wiley, New York; 1975.
Acharya B, et al. Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC. Availabe:https://arxiv.org/pdf/- 1604.06645.pdf
Comay E. Lett. Nuovo Cimento. 1985;43:150.
Griffiths D. Introduction to elementary particles, 2nd Edition. Wiley-VCH, Weinheim; 2008.
Dirac PAM. The theory of magnetic poles. Phys. Rev. 1948;74:817.
Schwinger J. Phys. Rev. 1968;173:1536.
Schwinger J. Science. 1969;165;757.
Barut AO. Phys. Rev. 1971;D3:1747.
Tanabashi M, et al. Particle data group. Phys. Rev. D. 2018;98:030001. Available:http://pdg.lbl.gov/2019/listings/rpp- 2019-list-photon.pdf
Bauer TH, Spital RD, Yennie DR, Pipkin FM. Rev. Mod. Phys. 1978;50:261.
Thomson M. Modern particle physics. Cambridge University Press, Cambridge; 2013.
Particle Data Group; 2012. Available:http://pdg.lbl.gov/2012/reviews/rpp- 2012-rev-cross-section-plots.pdf
Perkins DH. Introduction to high energy physics. Menlo Park CA, Addison-Wesley;1987.
See the Wikipedia item Available:https://en.wikipedia.org/wiki/- Strong CP problem Available:https://arxiv.org/abs/1203.4051
Alberg M. Prog. Part. Nucl. Phys. 2008;61:140.
Reimer PE. The Fermilab SeaQuest Collaboration. EPJ Web of Conferences. 2016;113:05012. Available:https://www.epjconferences.org/articles/epjconf/pdf/- 2016/08/epjconf fb2016 05012.pdf
Reimer PE. Available:https://www.anl.gov/event/- measurement-of-the-flavor-asymmetryin-the-protons-sea-quarks
Krisch AD. Hard collisions of spinning protons: Past, present and future. The European Physical Journal A. 2007;31:417- 423