A Proposed SUSY Alternative (SUSYA) Based on a New Type of Seesaw Mechanism Applicable to All Elementary Particles and Predicting a New Type of Aether Theory

Main Article Content

Andrei-Lucian Drăgoi

Abstract

This paper proposes a potentially viable “out-of-the-box” alternative (called “SUSYA”) to the currently known supersymmetry (SUSY) theory variants: SUSYA essentially proposes a new type of seesaw mechanism (SMEC) applicable to all elementary particles (EPs) and named “Z-SMEC”; Z-SMEC is a new type of charge-based mass symmetry/”conjugation” between EPs which predicts the zero/non-zero rest masses of all known/unknown EPs, EPs that are “conjugated” in boson-fermion pairs sharing the same electromagnetic charge (EMC). Z-SMEC is actually derived from an extended zero-energy hypothesis (eZEH) which is essentially a conservation principle applied on zero-energy (assigned to the ground state of vacuum) that mainly states a general quadratic equation governing a form of ex-nihilo creation and having a pair of conjugate boson-fermion mass solutions for each set of given coefficients. eZEH proposes a general formula for all the rest masses of all EPs from Standard model, also indicating the true existence of the graviton and a possible bijective connection between the three types of neutrinos (all predicted to be actually Majorana fermions) and the massless bosons (photon, gluon and the hypothetical graviton), between the electron/positron and the W boson, predicting at least three generations of leptoquarks (LQs) (defined here as the “mass-conjugates” of the three known generations of quarks) and predicting two distinct types of neutral massless fermions (NMFs) (modelled as mass-conjugates of the Higgs boson and Z boson respectively) which may be plausible constituents for a hypothetical lightest possible (hot fermionic) dark matter (LPDM) or, even more plausible, the main constituents of a superfluid fermionic vacuum/aether, as also proposed by the notorious Superfluid vacuum theory (SVT) (in which the physical vacuum is modeled as a bosonic/fermionic superfluid). SUSYA also predicts two hypothetical bosons defined as the ultra-heavy bosonic mass-conjugates of the muon and tauon called here the “W-muonic boson” (Wmb) and the “W-tauonic boson” (Wtb) respectively: Wmb and Wtb are predicted much heavier than the W boson and the Higgs boson so that Wmb and Wtb can be regarded as ultra-heavy charged Higgs bosons with their huge predicted rest energies defining the energy scale at which the electroweak field (EWF) may be unified with the Higgs field (HF).

Keywords:
Supersymmetry (SUSY), SUSY alternative (SUSYA), electromagnetic charge (EMC), charge-based mass symmetry/conjugation, extended zero-energy hypothesis (eZEH), conservation principle applied on zero-energy, elementary particles (EPs), “conjugated” boson-fermion pairs, leptoquarks (LQs), neutral massless fermions (NMFs), lightest possible (hot fermionic) dark matter (LPDM), lightest possible (hot fermionic) dark matter (LPDM)Superfluid vacuum theory (SVT).

Article Details

How to Cite
Drăgoi, A.-L. (2020). A Proposed SUSY Alternative (SUSYA) Based on a New Type of Seesaw Mechanism Applicable to All Elementary Particles and Predicting a New Type of Aether Theory. Physical Science International Journal, 24(10), 19-52. https://doi.org/10.9734/psij/2020/v24i1030218
Section
Short Research Article

References

Haber Howie. Supersymmetry, Part I (Theory). (PDF). Reviews, Tables and Plots. Particle Data Group (PDG); 2014. Available:https://pdg.lbl.gov/2014/reviews/rpp2014-rev-susy-1-theory.pdf

Langacker Paul. Meet a superpartner at the LHC. Physics. New York: American Physical Society. 3 (98). Bibcode: 2010PhyOJ...3...98L; 2010. DOI: 10.1103/Physics.3.98 ISSN 1943-2879 OCLC 233971234 Available:https://physics.aps.org/articles/v3/98

Andrei-Lucian Drăgoi. On a possible logarithmic connection between Einstein’s constant and the fine-structure constant, in relation to a zero-energy hypothesis”, Physical Science International Journal (PSIJ). ISSN: 2348-0130. 2020;24(5):22-40. DOI: 10.9734/PSIJ/2020/v24i530191 Available:www.journalpsij.com/index.php/PSIJ/article/view/30191. See also the following addendum-like paper containing some important periodic updates on this article: “Periodic updates of the article <

Michio Kaku, Jennifer Trainer Thompson. Beyond Einstein: The Cosmic Quest for the Theory of the Universe. (book), Oxford University Press. 1997;189. Available:https://books.google.co.uk/books?id=SoZhv5feNQ4C&pg=PA189

Edward P. Tryon. Is the Universe a Vacuum Fluctuation? Nature. 1973;246: 396–397. DOI: 10.1038/246396a0 Available:www.readcube.com/articles/10.1038/246396a0; Available:www.nature.com/articles/246396a0

Alan H. Guth. The inflationary universe. The quest for a new theory of cosmic origins. With a Foreword by Alan Lightman. (1st Edition). (Hardcover, 1997;384. Published 1997 by Jonathan Cape Ltd) ISBN 0-224-04448-6. Appendix A. DOI: 10.1119/1.18814 Available:www.amazon.com/Alan-Guth-Inflationary-Universe-Origins/dp/B008UBB3NE;(2) https://aapt.scitation.org/doi/10.1119/1.18814

Yanagida T. Horizontal symmetry and masses of neutrinos. Progress of Theoretical Physics. 1980;64(3):1103–1105. Bibcode: 1980PThPh..64.1103Y DOI:10.1143/PTP.64.1103 Available:https://academic.oup.com/ptp/article/64/3/1103/1911881

Andrei-Lucian Drăgoi. On a plausible triple electro-gravito-informational significance of the fine structure constant. Physical Science International Journal (PSIJ), ISSN: 2348-0130. 2017;15(3):1-19. DOI: 10.9734/PSIJ/2017/34613 Available:www.sciencedomain.org/abstract/20204.

Palash B. Pal. Dirac, majorana and weyl fermions. arXiv:1006.1718 [hep-ph]; 2010. Available:https://arxiv.org/abs/1006.1718

Howard E. Haber. Massless Majorana and Weyl fermions cannot be distinguished; 2019. Available:http://scipp.ucsc.edu/~haber/webpage/majnu.pdf and http://scipp.ucsc.edu/~haber/index.html

Hottaa T, Izubuchib T, Nishimura J. Massless Majorana fermion on the domain wall”. Nucl. Phys. B, Proc. Suppl. 1998;63: 685-687. Available:http://cds.cern.ch/record/334435 and https://cds.cern.ch/record/334435/files/9709075.pdf

Felix Finster. The principle of the fermionic projector”. Providence, R.I: American Mathematical Society. ISBN 978-0-8218-3974-4. OCLC 61211466; 2006. Available:https://www.worldcat.org/title/principle-of-the-fermionic-projector/oclc/61211466, Available:https://arxiv.org/abs/hep-th/0001048 (Chapters 0-4), https://arxiv.org/abs/hep-th/0202059 (Chapters 5-8), https://arxiv.org/abs/hep-th/0210121 (Appendices)

Jungman G, Kamionkowski M, Griest K. (Supersymmetric Dark Matter (ArXiv preprint) arXiv: hep-ph/9506380; 1995. Available:https://arxiv.org/abs/hep-ph/9506380 and Available:https://arxiv.org/pdf/hep-ph/9506380.pdf

Ferreira Elisa GM. Ultra-Light Dark Matter (ArXiv preprint) arXiv: 2005.03254; 2020. Available:https://arxiv.org/abs/2005.03254 and https://arxiv.org/pdf/2005.03254.pdf

Einstein Albert. Ether and the Theory of Relativity. republished in Sidelights on Relativity (Methuen, London1920); 1922. Available:en.wikisource.org/wiki/Ether_and_the_Theory_of_Relativity

Dirac Paul AM. Is there an Aether? Letters to Nature. Nature. 1951;168(4282):906–907. Bibcode: Natur. 1951168..906D DOI: 10.1038/168906a0 Available:www.nature.com/articles/168906a0

Davies Paul (Editor) & Brown, Julian R. (Editor). The ghost in the atom: A discussion of the mysteries of quantum physics. (Reissue Edition from the “Canto series”), Cambridge University Press; Reissue edition; 2010. ISBN-10: 9780521457286 ISBN-13: 978-0521457286 ASIN: 0521457289 Available:www.amazon.com/Ghost-Atom-Discussion-Mysteries-Quantum/dp/0521457289 and www.goodreads.com/book/show/100633.The_Ghost_in_the_Atom

Brunetti R, Zeilinger A. (Editors). Quantum (Un)speakables” (a collection of essays in commemoration of John S. Bell, which is is the result of the "Quantum (Un)speakables" conference organised by the University of Vienna), Springer, Berlin 2002;Chapter 22. Available:www.springer.com/gp/book/9783540427568

Annales de la Fondation Louis de Broglie. 1987;12(4):22. Available:http://aflb.ensmp.fr/AFLB-classiques/aflb124p001.pdf

Popescu Ioan-Iovitz. Ether and etherons - a possible reappraisal of the ether concept. translation from the Romanian Academy Journal of Physics Stud. Cercet. Fiz., 1982;34:451-468. Available:www.iipopescu.com/ether_and_etherons.html and https://editura.mttlc.ro/carti/Iovitz%20-%20Etherons.CLP.pdf

Dirac Paul AM. Is there an Aether? Nature. 1952;169(4304):702. Bibcode: 1952Natur.169..702D DOI: 10.1038/169702b0 Available:www.nature.com/articles/169702b0

Sinha KP, Sivaram C, Sudarshan ECG. Aether as a superfluid state of particle-antiparticle pairs. Foundations of Physics. Springer Nature. 1976;6(1):65–70. DOI: 10.1007/bf00708664 ISSN 0015-9018 Available:https://link.springer.com/article/10.1007%2FBF00708664

Sinha KP, Sivaram C, Sudarshan ECG. The superfluid vacuum state, time-varying cosmological constant, and nonsingular cosmological models. Foundations of Physics. Springer Nature. 1976;6(6):717–726. DOI: 10.1007/bf00708950 ISSN 0015-9018 Available:https://link.springer.com/article/10.1007%2FBF00708950

Sinha KP, Sudarshan ECG. The superfluid as a source of all interactions. Foundations of Physics. Springer Nature. 1978;8(11–12):823–831. DOI: 10.1007/bf00715056 ISSN 0015-9018 Available:https://link.springer.com/article/10.1007%2FBF00715056

Chimento LP, et al. Fermionic cosmologies. Journal of Physics: Conference Series. 2010;306(2011): 012052. 5th International Workshop DICE2010 (IOP Publishing) DOI: 10.1088/1742-6596/306/1/012052 Available:https://s3.cern.ch/inspire-prod-files-e/ec72e1177e54dc891490ad4afdd1d3e5

Verlinde EP. On the Origin of Gravity and the Laws of Newton. JHEP. 2011;4:29. arXiv: 1001.0785. Bibcode: 2011JHEP...04..029V. DOI: 10.1007/JHEP04(2011)029 S2CID 3597565 Available:https://link.springer.com/article/10.1007%2FJHEP04%282011%29029 and https://arxiv.org/abs/1001.0785

Yoshiharu Kawamura. Fermionic scalar field. arXiv:1406.6155; 2014. Available:https://arxiv.org/abs/1406.6155

Bœhm C, Fayet P. Scalar dark matter candidates; 2009. Available:http://cds.cern.ch/record/618160 and http://cds.cern.ch/record/618160/files

Gasperini M. Singularity Prevention and Broken Lorentz Symmetry. Classical and Quantum Gravity. 1987;4(2):485–494. Bibcode: 1987CQGra...4..485G DOI: 10.1088/0264-9381/4/2/026 Available:https://iopscience.iop.org/article/10.1088/0264-9381/4/2/026

Jacobson Ted, Mattingly David. Gravity and a Preferred Frame. arXiv: gr-qc/0007031; 2000. DOI: 10.1103/PhysRevD.64.024028 Available:arxiv.org/abs/gr-qc/0007031 and journals.aps.org/prd/abstract/10.1103/PhysRevD.64.024028; See also the review of Einstein aether theories published by the same authors in 2004 at these URLs: arxiv.org/abs/gr-qc/0410001 and www.researchgate.net/publication/1968543

Christian Heinicke(Cologne U.), Peter Baekler(Heinrich Heine U., Dusseldorf), Friedrich W. Hehl(Cologne U. and Missouri U.). Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity. Phys. Rev. D. 2005;72(2005): 025012. DOI: 10.1103/PhysRevD.72.025012 Available:arxiv.org/abs/gr-qc/0504005, journals.aps.org/prd/abstract/10.1103/PhysRevD.72.025012 Available:https://inspirehep.net/literature/679503

Tom Złośnik, Federico Urban, Luca Marzola, Tomi Koivisto. Spacetime and dark matter from spontaneous breaking of Lorentz symmetry. arXiv: 1807.01100; 2018. Available:https://arxiv.org/abs/1807.01100

Richard A. Battye, Boris Bolliet, Francesco Pace, Damien Trinh. Cosmologically viable generalized Einstein-aether theories. Phys. Rev. D 99, 043515. 2019;99(4). DOI: 10.1103/PhysRevD.99.043515 Available:https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.043515 and https://arxiv.org/abs/1811.07805; See also a dedicated PowerPoint presentation (written by the same authors) at this URL: indico.cern.ch/event/527550/contributions/2519671/attachments/1447906/2231460/PONT2017_Trinh.pdf

Jussi Lindgren, Jukka Liukkonen. The Heisenberg uncertainty principle as an endogenous equilibrium property of stochastic optimal control systems in quantum mechanics. Symmetry. 2020; 12(9):1533. DOI: 10.3390/sym12091533 Available:https://www.mdpi.com/2073-8994/12/9/1533

Marjanovic Goran. About Ether; 1980-1993. Available:http://users.beotel.net/~gmarjanovi and http://users.beotel.net/~gmarjanovic/O_Etru_e.pdf), the single source in English (a non-academic webarticle) which mentions Ohatrin’s, Anatolij Fedorovich (1989) paper called “Microleptonic fields” (original article in Russian isn’t available online, but some information on that original article is also available at these URLs: www.liveinternet.ru/users/valentin_tsmakaliuk/post130059289 [in Russian] and https://nimbouev.livejournal.com/60571.html [a text on Ohatrin’s “microleptons” written in rough English]). Indirect information also available here: http://users.beotel.net/~gmarjanovic/O_Etru_e.pdf

Battye Richard A, Moss Adam. Evidence for massive neutrinos from cosmic microwave background and lensing observations. Physical Review Letters. 2014;112(5):051303. arXiv: 1308.5870 Bibcode: 2014PhRvL.112e1303B DOI: 10.1103/PhysRevLett.112.051303 PMID 24580586 Available:https://arxiv.org/abs/1308.5870

Assamagan K, Ch. Brönnimann, Daum M, Forrer H, Frosch R, Gheno P, Horisberger R, Janousch M, Kettle PR, Spirig Th, Wigger C. Upper limit of the muon-neutrino mass and charged-pion mass from momentum analysis of a surface muon beam”. Phys. Rev. D. 1996;53:6065. Published 1 June 1996 DOI: 10.1103/PhysRevD.53.6065 Available:https://journals.aps.org/prd/abstract/10.1103/PhysRevD.53.6065

Barate R, Buskulic D, Decamp D, et al. An Upper limit on the tau-neutrino mass from three-prong and five-prong tau decays. Europ Phys J C. 1998;2(1998):395- 406. DOI: 10.1007/s100520050149 Available:https://epubs.stfc.ac.uk/work/26893; Available:www.researchgate.net/publication/30403534

Patrignani C, et al. (Particle Data Group), Chin. Phys. C, 40, 100001. See: Introduction to the neutrino properties listings, revised in August 2013 by P. Vogel (Caltech) and A. Piepke (University of Alabama); 2016. Available:https://pdg.lbl.gov/2016/listings/rpp2016-list-neutrino-prop.pdf

Glashow SL. Lévy, Maurice; Basdevant, Jean-Louis; Speiser, David; Weyers, Jacques; Gastmans, Raymond; Jacob, Maurice (eds.). "The Future of Elementary Particle Physics". NATO Sci. Ser. B. 1980;61:687. DOI: 10.1007/978-1-4684-7197-7 ISBN 978-1-4684-7199-1 Available:https://link.springer.com/book/10.1007%2F978-1-4684-7197-7

Mohapatra RN, Senjanovic G. Neutrino mass and spontaneous parity non-conservation. Phys. Rev. Lett. 1980;44(14):912–915. Bibcode:1980PhRvL..44..912M DOI: 10.1103/PhysRevLett.44.912 Available:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.44.912

Schechter J, Valle J. Neutrino masses in SU(2) ⊗ U(1) theories. Phys. Rev. 1980; 22(9):2227–2235. Bibcode:1980PhRvD..22.2227S doi:10.1103/PhysRevD.22.2227 Available:https://journals.aps.org/prd/abstract/10.1103/PhysRevD.22.2227

Dirac PAM. The quantum theory of the electron. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1928;117(778):610–624. Bibcode: 1928RSPSA.117..610D DOI:10.1098/rspa.1928.0023 Available:https://royalsocietypublishing.org/doi/10.1098/rspa.1928.0023

Andrei-Lucian Drăgoi. On a Plausible triple electro-gravito-informational significance of the fine structure constant. Physical Science International Journal (PSIJ), ISSN: 2348-0130. 2017;15(3). DOI: 10.9734/PSIJ/2017/34613 Available:www.sciencedomain.org/abstract/20204 and www.researchgate.net/publication/318762059

Andrei-Lucian Drăgoi. (Toy-model) A Simple “Digital” Vacuum Composed of Space Voxels with Quantized Energetic States. Physical Science International Journal (PSIJ), ISSN: 2348-0130. 2018; 18(1). DOI: 10.9734/PSIJ/2018/41391 Available:www.sciencedomain.org/abstract/24892 and www.researchgate.net/publication/325490276