The Pause End and Major Temperature Impacts during Super El Niños are Due to Shortwave Radiation Anomalies
Antero Ollila *
Department of Civil and Environmental Engineering (Emer.), School of Engineering, Aalto University, Espoo, Otakaari 1, Box 11000, 00076 Aalto, Finland.
*Author to whom correspondence should be addressed.
Abstract
The hiatus or temperature pause during the 21st century has been the subject of numerous research studies with very different results and proposals. In this study, two simple climate models have been applied to test the causes of global temperature changes. The climate change factors have been shortwave (SW) radiation changes, changes in cloudiness and ENSO (El Niño Southern Oscillation) events assessed as the ONI (Oceanic Niño Index) values and anthropogenic climate drivers. The results show that a simple climate model assuming no positive water feedback follows the satellite temperature changes very well, the mean absolute error (MAE) during the period from 2001 to July 2019 being 0.073°C and 0.082°C in respect to GISTEMP. The IPCC’s simple climate model shows for the same period errors of 0.191°C and 0.128°C respectively. The temperature in 2017-2018 was about 0.2°C above the average value in 2002–2014. The conclusion is that the pause was over after 2014 and the SW anomaly forcing was the major reason for this temperature increase. SW anomalies have had their greatest impacts on the global temperature during very strong (super) El Niño events in 1997-98 and 2015-16, providing a new perspective for ENSO events. A positive SW anomaly continued after 2015-16 which may explain the weak La Niña 2016 temperature impacts, and a negative SW anomaly after 1997-98 may have contributed two strong La Niña peaks 1998-2001. No cause and effect connection could be found between the SW radiation and temperature anomalies in Nino areas.
Keywords: Pause, hiatus, climate change, ENSO, El Niño, shortwave changes