Solving Generalized Nonlinear Schrödinger Equation by Adomian Decomposition Technique

Gaston Edah *

Département de Physique, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, BP 526 Cotonou, Bénin and International Chair of Mathematical Physics and Applications (ICMPA-Unesco Chair), BP 526 Cotonou, Université d’Abomey-Calavi, Bénin.

Villévo Adanhoumè

International Chair of Mathematical Physics and Applications (ICMPA-Unesco Chair), BP 526 Cotonou, Université d’Abomey-Calavi, Bénin.

Marc Amour Ayela

Institut de Mathématiques et de Sciences Physiques, Université d’Abomey-Calavi, BP 526 Cotonou, Bénin.

*Author to whom correspondence should be addressed.


Abstract

In this paper, using a suitable change of variable and applying the Adomian decomposition method to the generalized nonlinear Schr¨odinger equation, we obtain the analytical solution, taking into account the parameters such as the self-steepening factor, the second-order dispersive parameter, the third-order dispersive parameter and the nonlinear Kerr effect coefficient, for pulses that contain just a few optical cycle. The analytical solutions are plotted. Under influence of these effects, pulse did not maintain its initial shape.  

Keywords: Adomian method, nonlinear Schrödinger equation, ultrashort pulse propagation


How to Cite

Edah, G., Adanhoumè, V., & Ayela, M. A. (2021). Solving Generalized Nonlinear Schrödinger Equation by Adomian Decomposition Technique. Physical Science International Journal, 25(9), 31–38. https://doi.org/10.9734/psij/2021/v25i930282

Downloads

Download data is not yet available.