Solving Generalized Nonlinear Schrödinger Equation by Adomian Decomposition Technique

Gaston Edah *

Département de Physique, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, BP 526 Cotonou, Bénin and International Chair of Mathematical Physics and Applications (ICMPA-Unesco Chair), BP 526 Cotonou, Université d’Abomey-Calavi, Bénin.

Villévo Adanhoumè

International Chair of Mathematical Physics and Applications (ICMPA-Unesco Chair), BP 526 Cotonou, Université d’Abomey-Calavi, Bénin.

Marc Amour Ayela

Institut de Mathématiques et de Sciences Physiques, Université d’Abomey-Calavi, BP 526 Cotonou, Bénin.

*Author to whom correspondence should be addressed.


Abstract

In this paper, using a suitable change of variable and applying the Adomian decomposition method to the generalized nonlinear Schr¨odinger equation, we obtain the analytical solution, taking into account the parameters such as the self-steepening factor, the second-order dispersive parameter, the third-order dispersive parameter and the nonlinear Kerr effect coefficient, for pulses that contain just a few optical cycle. The analytical solutions are plotted. Under influence of these effects, pulse did not maintain its initial shape.  

Keywords: Adomian method, nonlinear Schrödinger equation, ultrashort pulse propagation


How to Cite

Edah, Gaston, Villévo Adanhoumè, and Marc Amour Ayela. 2021. “Solving Generalized Nonlinear Schrödinger Equation by Adomian Decomposition Technique”. Physical Science International Journal 25 (9):31-38. https://doi.org/10.9734/psij/2021/v25i930282.