Proposal and Simulation of a Doubly Fed Induction Generator for the Coastal Zone of Benin

D’Almeida Renaud Philippe *

EPAC/UAC, Abomey-Calavi, Benin.

Agbokpanzo Richard G.

ENSET/UNSTIM, Lokossa, Benin.

Agbomahena Macaire

EPAC/UAC, Abomey-Calavi, Benin.

*Author to whom correspondence should be addressed.


Abstract

This paper presents the sizing of a Doubly Fed Induction Generator (DFIG) with a power of 690.747 kW for the coastal area of Benin. The sizing of the proposed DFIG starts from the power density of the offshore wind potential of Benin obtained at 80 m at the sea surface to determine the power of the generator. Thanks to the geometrical, electrical and magnetic parameters obtained after sizing, the simulation of the generator operation was done using the finite element analysis (FEA). This simulation is done by running the generator at nominal speed in supersynchronous mode. The results of this simulation show that the powers obtained are close to the expected theoretical values. The curves of the powers and those of the flux densities in the air gap of the generator are presented. Electromagnetic model results are then used to develop the thermal model of the generator. The results of the thermal analysis obtained after simulation by the FEA allowed us to know the temperature values in each region of the DFIG.

Keywords: DFIG, FEA, power density, electromagnetic model, thermal model


How to Cite

Philippe, D. R., Richard G., A., & Macaire, A. (2022). Proposal and Simulation of a Doubly Fed Induction Generator for the Coastal Zone of Benin. Physical Science International Journal, 26(6), 17–28. https://doi.org/10.9734/psij/2022/v26i6748

Downloads

Download data is not yet available.

References

Renewable Energy Market Analysis: Africa and its Regions; 318.

The Renewable Energy Transition in Africa, /publications/2021/March/The-Renewable-Energy-Transition-in-Africa. https://www.irena.org/publications/2021/March/The-Renewable-Energy-Transition-in-Africa (consulté le 1 octobre 2022).

Gnandji MR, Fifatin FX, Dubas F, Espanet C, et A. Vianou, Etude du Potentiel Energétique Eolien Offshore du Bénin, in Colloque International Francophone portant sur l’Energétique et la Mécanique, Cotonou, Benin, avr. 2018. Consulté le: 1 octobre 2022. [En ligne]. Disponible sur.

Available:https://hal.archives-ouvertes.fr/hal-02130123

Hiremath R, et T. Moger, Comparison of LVRT Enhancement for DFIG-Based Wind Turbine Generator with Rotor-Side Control Strategy, in 2020 International Conference on Electrical and Electronics Engineering (ICE3), Gorakhpur, India, févr. 2020; 216‑220.

DOI: 10.1109/ICE348803.2020.9122830

Rached B, Bensaid M, Elharoussi M, Abdelmounim E. DSP in the loop Implementation of the Control of a DFIG Used in Wind Power System, in 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), Meknes, Morocco, avr. 2020;1-6.

DOI:10.1109/IRASET48871.2020.9092165

Prieto Cerón CE, Normandia Lourenço LF, Solís-Chaves JS, Sguarezi Filho AJ. A generalized predictive controller for a wind turbine providing frequency support for a microgrid, energies. 2022;15(7):Art no 7.

DOI: 10.3390/en15072562

Ventusky. Cartes de Prévision Météo.

Available:https://www.ventusky.com (consulté le 1 octobre 2022).

Phan DC, et S. Yamamoto, maximum energy output of a DFIG wind turbine using an improved MPPT-curve method, energies. 2015;8(10):oct:Art no 10.

DOI: 10.3390/en81011718

Ulu C, Kömürgöz G. Electrical design and testing of a 500 kW doubly fed induction generator for wind power applications. Turk J Elec Eng & Comp Sci. 2017; 25:1278-90.

DOI: 10.3906/elk-1512-28

Izanlo A, Abdollahi SE, Gholamian SA. A new method for design and optimization of DFIG for wind power applications. Electr Power Compon Syst. Sep 2020;48(14-15):1523-36.

DOI: 10.1080/15325008.2020.1856231

OI. Olubamiwa et N. Gule, Performance investigation of DFIG topologies with different design parameters, in 2017 IEEE AFRICON, Cape Town, Sep 2017;1242-7.

DOI: 10.1109/AFRCON.2017.8095660

Boldea I, Nasar SA. The induction machines design handbook. 2nd ed; 2010.

Pyrhonen J, Jokinen T, Hrabovcová V. Design of rotating electrical machines. Chichester. Sussex, United Kingdom: West; Hoboken, NJ: Wiley; 2008.