Computational Nanomaterials Design: towards the Realization of Nanoparticle use in Radiotherapy Case Study 2: Adsorption states of At on Au (111) Surface
Physical Science International Journal,
Page 1-10
DOI:
10.9734/psij/2022/v26i7752
Abstract
Astatine-211 (211At or simply At) used as an α particle emitter is currently gaining as treatment method for cancer cells. It must however be attached to a carrier to facilitate the treatment process. Gold nanoparticle is a good candidate that has been used in several tests. Knowing the physics behind the adsorption of astatine on gold nanoparticles would be advantageous in designing a more optimal method for such applications. We therefore performed density functional theory calculation on astatine adsorption on gold (111) surface to understand both the mechanism of astatine bonding with gold and the strength of the bonding. We found the mechanism of adsorption to be the hybridization between the 6p orbital of astatine and the 5d and 6s orbitals of the gold. We also found the adsorption strength of astatine on gold to be -1.43 eV at the fcc hollow site. Both results provide us with a good starting point towards our goal of designing an optimized gold nanoparticle for radiotherapy.
Keywords:
- Computational materials design
- radionuclide adsorption strength
- adsorption on gold surface
How to Cite
References
Available:https://gco.iarc.fr/today/data/factsheets/cancers/39-All-cancers-fact-sheet.pdf” Online (2020)
(Retrieved 2022-10-31).
Kato H, Huang X, Kadonaga Y, Katayama D, Ooe K, Shimoyama A, Kabayama K, Toyoshima A., Shinohara A, Hatazawa J, and K. Fukase. Intratumoral administration of astatine-211-labeled gold nanoparticle for alpha therapy. J. Nanobiotechnol. 19, 223 (2021).
Available: https://doi.org/10.1186/s12951-021-00963-9
Sgouros G, Roeske JC, McDevitt MR, Palm S, Allen BJ. SNM MIRD Committee: Bolch WE, Brill AB, Fisher DR, Howell RW, Meredith RF, Sgouros G, Wessels BW, Zanzonico PB: MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of alphaparticle emitters for targeted radionuclide therapy. J Nucl Med. 2010; 51:311-28.
Available:https://doi.org/10.2967/jnumed.108.058651
Elgqvist J, Frost S, Pouget JP, Albertsson P. The potential and hurdles of targeted alpha therapy–clinical trials and beyond. Frontiers in oncology. 2014;3:324.
Available:https://doi.org/10.3389/fonc.2013.00324
Dziawer L, Koźmiński P, Męczyńska-Wielgosz S, Pruszyński M, Łyczko M, Wąs B, Celichowski G, Grobelny J, Jastrzebski J, Bilewicz A. Gold nanoparticle bioconjugates labelled with 211At for targeted alpha therapy. RSC Adv. 2017;7:41024.
Available:https://doi.org/10.1039/C7RA06376H
Kaneda‐Nakashima K, Zhang Z, Manabe Y, Shimoyama A, Kabayama K, Watabe T, Kanai Y, Ooe K, Toyoshima A, Shirakami Y, Yoshimura T. α‐Emitting cancer therapy using 211At‐AAMT targeting LAT1. Cancer science. 2021;112(3):1132-40.
Available:https://doi.org/10.1111/cas.14761
Ha H, Kwon H, Lim T, Jang J, Park SK, Byun Y. Inhibitors of prostate-specific membrane antigen in the diagnosis and therapy of metastatic prostate cancer–a review of patent literature. Expert Opinion on Therapeutic Patents. 2021;31(6):525-47.
Available:https://doi.org/10.1080/13543776.2021.1878145
Li HK, Morokoshi Y, Kodaira S, Kusumoto T, Minegishi K, Kanda H, Nagatsu K, Hasegawa S. Utility of 211At-trastuzumab for the treatment of metastatic gastric cancer in the liver: evaluation of a preclinical α-radioimmunotherapy approach in a clinically relevant mouse model. Journal of Nuclear Medicine. 2021;62(10):1468-74.
Available:https://doi.org/10.2967/jnumed.120.249300
Zalutsky MR, Pruszynski M. Astatine-211: Production and Availability. Curr. Radiopharm. 2011;4:177.
Available:https://doi.org/10.2174/1874471011104030177
Poty S, Francesconi LC, McDevitt MR, Morris MJ, Lewis JS. α-Emitters for radiotherapy: from basic radiochemistry to clinical studies—part 1. Journal of Nuclear Medicine. 2018;59(6):878-84.
Available:https://doi.org/10.2967/jnumed.116.186338
Huang D, Liao F, Molesa S, Redinger D, Subramanian V. Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. Journal of the electrochemical society. 2003;150(7):G412.
Available:https://doi.org/10.1149/1.1582466
Haruta M, Kobayashi T, Sano H, Yamada N. Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far below 0°C. Chem. Lett. 1987;16:405.
Available:https://doi.org/10.1246/cl.1987.405
Yotsuhashi S, Yamada Y, Kishi T, Diño WA, Nakanishi H, Kasai H. Dissociative adsorption of O 2 on Pt and Au surfaces: Potential-energy surfaces and electronic states. Physical Review B. 2008;77(11):115413.
Available:https://doi.org/10.1103/PhysRevB.77.115413
Arevalo RL, Escaño MC, Kasai H. Mechanistic insight into the Au-3d metal alloy-catalyzed borohydride electro-oxidation: from electronic properties to thermodynamics. ACS Catalysis. 2013;3(12):3031-40.
Available:https://doi.org/10.1021/cs400735h
Arevalo RL, Aspera SM, Nakanishi H, Kasai H, Yamaguchi S, Asazawa K. Adsorption of Carbohydrazide on Au (111) and Au3Ni (111) Surfaces. Catalysis Letters. 2018;148(4):1073-9.
Available:Available:https://doi.org/10.1007/s10562-018-2327-2
Peng J, Liang X. Progress in research on gold nanoparticles in cancer management. Medicine. 2019;98:e15311.
Available:https://doi.org/10.1097/MD.0000000000015311
Li X, Zhang Y, Liu G, Zhou L, Xue Y, Liu M. Recent progress in the applications of gold-based nanoparticles towards tumor-targeted imaging and therapy. RSC advances. 2022;12(13):7635-51.
Available:https://doi.org/10.1039/D2RA00566B
Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. Nano Select. 2022 Apr;3(4):792-828.
Available:https://doi.org/10.1002/nano.202100255
Yuan L, Zhang F, Qi X, Yang Y, Yan C, Jiang J, Deng J. Chiral polymer modified nanoparticles selectively induce autophagy of cancer cells for tumor ablation. Journal of nanobiotechnology. 2018;16(1):1-6.
Available:https://doi.org/10.1186/s12951-018-0383-9
Duncan B, Kim C, Rotello VM. Gold nanoparticle platforms as drug and biomacromolecule delivery systems. Journal of controlled release. 2010 Nov 20;148(1):122-7.
Available:https://doi.org/10.1016/j.jconrel.2010.06.004
De Jong WH, Borm PJA. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine. 2008;3:133.
Available:https://doi.org/10.2147/ijn.s596
Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl. 2008;1:17.
Available:https://doi.org/10.2147/NSA.S3788
Lopez-Marzo AM, Hoyos-de-la-Torre R, Baldrich E. NaNO3/NaCl Oxidant and Polyethylene Glycol (PEG) Capped Gold Nanoparticles (AuNPs) as a Novel Green Route for AuNPs Detection in Electrochemical Biosensors. Anal. Chem. 2018;90:4010.
Available:https://doi.org/10.1021/acs.analchem.7b05150
Poty S, Francesconi LC, McDevitt MR, Morris MJ, Lewis JS. α-Emitters for Radiotherapy: From Basic Radiochemistry to Clinical Studies – Part 2. J. Nucl. Med. 2018;59:1020.
Available:https://doi.org/10.2967/jnumed.117.204651
Walsh AA. Chemisorption of iodine-125 to gold nanoparticles allows for real time quantitation and potential use in nanomedicine. J. Nanopart. Res. 2017;19:152.
Available:https://doi.org/10.1007/s11051-017-3840-8
Daems N, Michiels C, Lucas S, Baatout S, Aerts A. Gold nanoparticles meet medical radionuclides. Nuclear Medicine and Biology. 2021;100:61-90.
Available:https://doi.org/10.1016/j.nucmedbio.2021.06.001
Kasai H, Akai H, Yoshida H. Computational Materials Design from Basics to Actual Applications (Osaka University Press, Suita, Japan; 2005. (in Japanese).
ISBN: 978-4-87259-152-1
Kasai H, Tsuda M. Computational Materials Design, Case Study I: Intelligent/Directed Materials Design for Polymer Electrolyte Fuel Cells and Hydrogen Storage Applications (Osaka University Press, Suita, Japan; 2008) (in Japanese).
ISBN: 978-4-87259-254-2
Kasai H, Escaño MCS. Eds. Physics of Surface, Interface, and Cluster Catalysis (IOP Publishing Bristol UK; 2016).
Available:https://doi.org/10.1088/978-0-7503-1164-9
Kasai H, Padama AAB, Chantaramolee B, Arevalo RL. Hydrogen and Hydrogen-Containing Molecules on Metal Surfaces (Springer, Singapore; 2020).
Available:https://doi.org/10.1007/978-981-15-6994-4
Aspera SM, Arevalo RL, Chantaramolee B, Nakanishi H, Kasai H. PdRuIr ternary alloy as an effective NO reduction catalyst: insights from first-principles calculations. Phys. Chem. Chem. Phys. 2021;23:7153-7163.
Available:https://doi.org/10.1039/D0CP06453J
Kishida R, Aspera SM, Kasai H. Melanin Chemistry Explored by Quantum Mechanics (Springer, Singapore; 2021).
Available:https://doi.org/10.1007/978-981-16-1315-9
Serov A, Aksenov N, Bozhikov G, Eichler R, Dressler R, Lebedev V, Petrushkin O, Piguet D, Shishkin S, Tereshatov E, Türler A, Vögele A, Wittwer D, Gäggeler HW. Adsorption interaction of astatine species with quartz and gold surfaces. Radiochim. Acta. 2011;99:593-599.
Available:https://doi.org/10.1524/ract.2011.1850
Demidov Y, Zaitsevskii A. Adsorption of the astatine species on gold surface: A relativistic density functional theory study. Chem. Phys. Lett. 2018;691:126-130.
Available:https://doi.org/10.1016/j.cplett.2017.11.008
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. 1996;B 54:11169.
Available:https://doi.org/10.1103/PhysRevB.54.11169
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. B. 1996;6:15.
Available:https://doi.org/10.1016/0927-0256(96)00008-0
Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865.
Available:https://doi.org/10.1103/PhysRevLett.77.3865
Grimme S, Ehrlich S, Goerigk L. Effect of the Damping Function in Dispersed Corrected Density Functional Theory. J. Comput. Chem. 2011;32:1456.
Available:https://doi.org/10.1002/jcc.21759
Blöchl PE. Projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 1994;50:17953.
Available:https://doi.org/10.1103/PhysRevB.50.17953
Kresse G, Joubert D. From ultrasoft pseudopotentials to projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 1999;59:1758.
Available:https://doi.org/10.1103/PhysRevB.59.1758
Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys. Rev. B: Condens. Matter Mater. Phys. 1976;13:12.
Available:https://doi.org/10.1103/PhysRevB.13.5188
Lide DR, Ed. CRC Handbook of Chemistry and Physics (Taylor & Francis Group, Florida, 2005) 86th ed., p. 4-5.
Available:https://doi.org/10.1021/ja059868l
Henkelman G, Arnaldson A, Jónsson H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006;36:254.
Available:https://doi.org/10.1016/j.commatsci.2005.04.010
Kleis J, Greeley J, Romero NA, Morozov VA, Falsig H, Larsen AH, Lu J, Mortensen JJ, Dulak M, Thygesen KS, Norskøv JK, Jacobsen KJ. Finite Size Effects in Chemical Bonding: From Small Clusters to Solids. Catal. Lett. 2011;141:1067.
Available:https://doi.org/10.1007/s10562-011-0632-0
Grochola G, Snook IK, Russo SP. On the relative stabilities of gold nanoparticles. J. Chem. Phys. 2007;127:224704.
Available:https://doi.org/10.1063/1.2789419
Holec D, Dumitraschkewitz P, Vollath D, Fischer FD. Surface Energies of Au Nanoparticles Depending on Their Size and Shape. Nanomaterials. 2020;10: 484.
Available:https://doi.org/10.3390/nano10030484
-
Abstract View: 179 times
PDF Download: 68 times