Numerical Study of Turbulent Mixed Convection in a Square Lid Driven Cavity with an Inside Hot Bloc
Komlan Djiwonou Woenagnon
Laboratoire sur l’Energie Solaire, Groupe Phénomènes de Transfert et Energétique (LES-GPTE), Faculté des Sciences, Université de Lomé, 01BP: 1515, Togo.
Kokou N’wuitcha *
Laboratoire sur l’Energie Solaire, Groupe Phénomènes de Transfert et Energétique (LES-GPTE), Faculté des Sciences, Université de Lomé, 01BP: 1515, Togo.
Komi Apélété Amou
Laboratoire sur l’Energie Solaire, Chaire de l’UNESCO sur les Energies Renouvelables, Faculté des Sciences, Université de Lomé, 01BP: 1515, Togo.
Magolmèèna Banna
Laboratoire sur l’Energie Solaire, Groupe Phénomènes de Transfert et Energétique (LES-GPTE), Faculté des Sciences, Université de Lomé, 01BP: 1515, Togo.
*Author to whom correspondence should be addressed.
Abstract
In this study, we are interested in the two-dimensional numerical simulation of the turbulent mixed convection in the case of a square with two side lid-driven cavity containing a hot obstacle. The transfer equations coupled with those of the K - ε closure model and the boundary conditions were presented and discretized using the finite volume method. The coupling between the velocity and pressure fields is achieved by the SIMPLE algorithm. The technique of line-by-line scanning with the Thomas algorithm (TDMA) is used for the iterative resolution of discretized equations. The control parameters of the present study are the temperature gradient between the hot walls and the cold walls, and the speed imposed on the mobile walls. Streamlines generally show flow characterized by the presence of two counter-rotating cells. The areas adjacent to the isothermal walls and to the moving walls are the site of the development of thermal and dynamic boundary layers, where significant temperature and velocity gradients have been observed, subsequently influencing the profiles of turbulent quantities such as turbulent viscosity, the production and dissipation of turbulent kinetic energy and the intensity of turbulence.
Keywords: Turbulent flow, mixed convection, heat transfer, lid-driven cavity, finite volume method