A Review of Linear Fresnel Collector Receivers used in Solar Thermal Technology

Gaëlle Kafira Ko *

Laboratoire d’Energies Thermiques REnouvelables (LETRE), Ecole Normal Supérieure (ENS), 01 BP 1757 Ouagadougou 01, Ouagadougou, Burkina Faso.

Aboubakar Gomna

Laboratoire Energies Renouvelables et Efficacité Energétique (LabEREE), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Ouagadougou, Burkina Faso.

Quentin Falcoz

Processes, Materials and Solar Energy Laboratory, PROMES-CNRS, Font-Romeu Odeillo, France.

Yezouma Coulibaly

Laboratoire Energies Renouvelables et Efficacité Energétique (LabEREE), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Ouagadougou, Burkina Faso.

Régis Olivès

Processes, Materials and Solar Energy Laboratory, PROMES-CNRS, Font-Romeu Odeillo, France.

*Author to whom correspondence should be addressed.


Linear Fresnel collectors (LFC) have, among the four technologies of concentrating solar power (CSP), the simpler technology. They have a one axis sun tracking, plane mirrors and a fix receiver. All these elements make them the most suitable for small scales CSP plants adapted to rural area of the Sub-Saharan region. The receiver is an important part of the LFC. There is a wide variety of receivers that differ in the shape of the absorber: mono-tube, multi-tube, plane. The shape of the secondary concentrator or its absence allows to categorize the receivers in a butterfly, compound parabolic concentrator, segmented parabolic secondary concentrator or trapezoidal receiver. Vacuum mono-tube receivers have heat losses between 200 W/m and 270 W/m at an absorber temperature of 350°C. A mono tube receiver at partial vacuum losses more than 350 W/m at 350°C. The lowest heat losses of a multi-tube receiver with a trapezoidal secondary concentrator can reach 500 W/m at an absorber temperature of 350°C. This paper discusses a comparative study of existing receiver designs in order to find the most suitable for rural areas in the sub-Saharan region, i.e. easy to design by hand and low cost. Although they do not have the best thermal performance, trapezoidal receivers with a black-painted copper multi-tube absorber and a glass cover seem to be the most suitable.

Keywords: Concentrating Solar Power (CSP), Linear Fresnel Collector (LFC), receiver, rural area, thermal losses

How to Cite

Ko, G. K., Gomna, A., Falcoz, Q., Coulibaly, Y., & Olivès, R. (2022). A Review of Linear Fresnel Collector Receivers used in Solar Thermal Technology. Physical Science International Journal, 26(8), 21–40. https://doi.org/10.9734/psij/2022/v26i8758


Download data is not yet available.


Singh T, Hussien MAA, Al-Ansari T, Saoud K, McKay G. Critical review of solar thermal resources in GCC and application of nanofluids for development of efficient and cost effective CSP technologies. Renew Sustain Energy Rev. 2018;91: 708–19.


Seshie YM, N’Tsoukpoe KE, Neveu P, Coulibaly Y, Azoumah YK. Small scale concentrating solar plants for rural electrification. Renew Sustain Energy Rev. 2018;90:195–209.


European Academies Science Advisory Council. Concentrating solar power: its potential contribution to a sustainable energy future. Halle (Saale): EASAC Secretariat; 2011.

IEA-ETSAP and IRENA. Concentrating Solar Power Technology Brief; 2013.

Concentrating Solar Power Projects by Technology | Concentrating Solar Power Projects | NREL n.d.

Available: https://solarpaces.nrel.gov/by-technology (Accessed December 3, 2022).

Linear Concentrator System Concentrating Solar-Thermal Power Basics. Energy Gov n.d.

Available:https://www.energy.gov/eere/solar/linear-concentrator-system-concentrating-solar-thermal-power-basics (accessed December 14, 2022).

Mills DR, Morrison GL. Compact Linear Fresnel Reflector solar thermal powerplants. Sol Energy. 2000;68:263–83.

Available: https://doi.org/10.1016/S0038-092X(99)00068-7.

Zhu G, Wendelin T, Wagner MJ, Kutscher C. History, current state, and future of linear Fresnel concentrating solar collectors. Sol Energy. 2014;103:639–52.


Chaves J, Collares-Pereira M. Etendue-matched two-stage concentrators with multiple receivers. Sol Energy. 2010;84: 196–207.


Zhu J, Chen Z. Optical design of compact linear fresnel reflector systems. Sol Energy Mater Sol Cells. 2018;176:239–50.


Beltagy H. The effect of glass on the receiver and the use of two absorber tubes on optical performance of linear fresnel solar concentrators. Energy. 2021;224: 120111.


[Duffie JA, Beckman WA. Solar engineering of thermal processes. Hoboken: Wiley; 2013.

Silvi C. The pioneering work on linear Fresnel reflector concentrators (LFCs) in Italy. Proc Solar PACES 2009.

Singh PL, Sarviya RM, Bhagoria JL. Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers. Appl Energy 2010;87:541–50.


Choudhury C, Sehgal HK. A fresnel strip reflector-concentrator for tubular solar-energy collectors. Appl Energy. 1986;23: 143–54.

Available: https://doi.org/10.1016/0306-2619(86)90036-X.

Facão J, Oliveira AC. Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator. Renew Energy. 2011;36: 90–6.


Natarajan SK, Reddy KS, Mallick TK. Heat loss characteristics of trapezoidal cavity receiver for solar linear concentrating system. Appl Energy. 2012;93:523–31.


Manikumar R, Valan Arasu A. Heat loss characteristics study of a trapezoidal cavity absorber with and without plate for a linear Fresnel reflector solar concentrator system. Renew Energy. 2014;63:98–108.


Flores Larsen S, Altamirano M, Hernández A. Heat loss of a trapezoidal cavity absorber for a linear Fresnel reflecting solar concentrator. Renew Energy 2012;39:198–206.


Abbas R, Montes MJ, Piera M, Martínez-Val JM. Solar radiation concentration features in Linear Fresnel Reflector arrays. Energy Convers Manag. 2012;54:133–44.


Sahoo SS, Singh S, Banerjee R. Analysis of heat losses from a trapezoidal cavity used for Linear Fresnel Reflector system. Sol Energy. 2012;86:1313–22.


Pauletta S. A Solar Fresnel Collector Based on an Evacuated Flat Receiver. Energy Procedia. 2016;101:480–7.


Taramona S, González-Gómez PÁ, Briongos JV, Gómez-Hernández J. Designing a flat beam-down linear Fresnel reflector. Renew Energy. 2022;187: 484–99.


Singh PL, Sarviya RM, Bhagoria JL. Heat loss study of trapezoidal cavity absorbers for linear solar concentrating collector. Energy Convers Manag. 2010;51:329–37.

Available: https://doi.org/10.1016/j.enconman.2009.09.029.

Rabl A. Comparison of solar concentrators. Sol Energy. 1976;18:93–111.

Available: https://doi.org/10.1016/0038-092X(76)90043-8.

Sahoo SS, Varghese SM, Suresh Kumar C, Viswanathan SP, Singh S, Banerjee R. Experimental investigation and computational validation of heat losses from the cavity receiver used in linear Fresnel reflector solar thermal system. Renew Energy. 2013;55: 18–23.


Gordon JM, Ries H. Tailored edge-ray concentrators as ideal second stages for Fresnel reflectors. Appl Opt. 1993;32: 2243–51.

Facao J, Oliveira AC. Simulation of a linear Fresnel solar collector concentrator. Int J Low-Carbon Technol. 2010;5:125–9.


Mathur SS, Negi BS, Kandpal TC. Geometrical designs and performance analysis of a linear Fresnel reflector solar concentrator with a flat horizontal absorber. Int J Energy Res. 1990;14: 107–24.

Negi BS, Kandpal TC, Mathur SS. Designs and performance characteristics of a linear fresnel reflector solar concentrator with a flat vertical absorber. Sol Wind Technol. 1990;7:379–92.

Available: https://doi.org/10.1016/0741-983X(90)90023-U.

Mathur SS, Kandpal TC, Negi BS. Optical design and concentration characteristics of linear Fresnel reflector solar concentrators—II. Mirror elements of equal width. Energy Convers Manag. 1991;31: 221–32.

Available: https://doi.org/10.1016/0196-8904(91)90076-U.

Mathur SS, Kandpal TC, Negi BS. Optical design and concentration characteristics of linear Fresnel reflector solar concentrators—I. Mirror elements of varying width. Energy Convers Manag. 1991;31:205–19.

Available: https://doi.org/10.1016/0196-8904(91)90075-T.

Grena R, Tarquini P. Solar linear Fresnel collector using molten nitrates as heat transfer fluid. Energy. 2011;36:1048–56.

Available: https://doi.org/10.1016/j.energy.2010.12.003.

Qiu Z, Li Q, Zhang Y, Jia H. Optical Design of Linear Fresnel Reflector Solar Concentrators. Energy Procedia. 2012;14:1960–6.


Veynandt F. Cogénération héliothermodynamique avec concentrateur linéaire de Fresnel : Modélisation de L’ensemble Du Procédé ; 2011.

Available: http://ethesis.inp-toulouse.fr/archive/00001786/ (accessed September 30, 2014).

Schott Ptr70 4th Generation Brochure | PDF | Solar Energy | Power Station. Scribd n.d.


(Accessed December 5, 2022).

Fernández-García A, Cantos-Soto ME, Röger M, Wieckert C, Hutter C, Martínez-Arcos L. Durability of solar reflector materials for secondary concentrators used in CSP systems. Sol Energy Mater Sol Cells. 2014;130:51–63.


Cheng Z-D, He Y-L, Qiu Y. A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends. Renew Energy. 2014;74:139–47.


Negi BS, Mathur SS, Kandpal TC. Optical and thermal performance evaluation of a linear fresnel reflector solar concentrator. Sol Wind Technol. 1989;6:589–93.

Available: https://doi.org/10.1016/0741-983X(89)90095-7.

Zhu Y, Shi J, Li Y, Wang L, Huang Q, Xu G. Design and thermal performances of a scalable linear Fresnel reflector solar system. Energy Convers Manag. 2017;146:174–81.


Hack M, Zhu G, Wendelin T. Evaluation and comparison of an adaptive method technique for improved performance of linear Fresnel secondary designs. Appl Energy. 2017;208:1441–51.


[Chaitanya Prasad GS, Reddy KS, Sundararajan T. Optimization of solar linear Fresnel reflector system with secondary concentrator for uniform flux distribution over absorber tube. Sol Energy. 2017;150:1–12.


Famiglietti A, Lecuona A. Direct solar air heating inside small-scale linear Fresnel collector assisted by a turbocharger: Experimental characterization. Appl Therm Eng. 2021;196:117323.


Canavarro D, Chaves J, Collares-Pereira M. New second-stage concentrators (XX SMS) for parabolic primaries; Comparison with conventional parabolic trough concentrators. Sol Energy 2013;92:98–105.


Singh PL, Ganesan S, Yàdav GC. Technical note: Performance study of a linear Fresnel concentrating solar device. Renew Energy 1999;18:409–16.

Available: https://doi.org/10.1016/S0960-1481(98)00805-2

Llamas D. Puerto Errado 2: World’s largest CSP based on Linear-Fresnel technology. HELIOSCSP

Available: https://helioscsp.com/puerto-errado-2-worlds-largest-csp-based-on-linear-fresnel-technology/ (accessed December 6, 2022).

Montanet E, Rodat S, Falcoz Q, Roget F. Influence de la topographie sur les performances optiques de concentrateurs linéaires de Fresnel : le cas de la centrale solaire eLLO ; 2022.

SUNCNIM et la Banque des Territoires inaugurent la centrale solaire thermodynamique avec stockage d’énergie de Llo | Suncnim n.d.

Available:https://www.suncnim.com/en/suncnim-et-la-banque-des-territoires-inaugurent-la-centrale-solaire-thermodynamique-avec-stockage (accessed December 1, 2022).

Hofer A, Cuevas F, Heimsath A, Nitz P, Platzer WJ, Scholl S. Extended Heat Loss and Temperature Analysis of Three Linear Fresnel Receiver Designs. Energy Procedia 2015;69:424–33.


Heimsath A, Cuevas F, Hofer A, Nitz P, Platzer WJ. Linear Fresnel Collector Receiver: Heat Loss and Temperatures. Energy Procedia. 2014;49:386–97.


=Montes MJ, Abbas R, Muñoz M, Muñoz-Antón J, Martínez-Val JM. Advances in the linear Fresnel single-tube receivers: Hybrid loops with non-evacuated and evacuated receivers. Energy Convers Manag, 2017;149:318–33.

Available https://doi.org/10.1016/j.enconman.2017.07.031.

Dey CJ. Heat transfer aspects of an elevated linear absorber. Sol Energy. 2004;76:243–9.


Reynolds DJ, Jance MJ, Behnia M, Morrison GL. An experimental and computational study of the heat loss characteristics of a trapezoidal cavity absorber. Sol Energy 2004;76:229–34.

Available https://doi.org/10.1016/j.solener.2003.01.001.

Abbas R, Muñoz J, Martínez-Val JM. Steady-state thermal analysis of an innovative receiver for linear Fresnel reflectors. Appl Energy 2012;92:503–15.

Available https://doi.org/10.1016/j.apenergy.2011.11.070.

Abbas R, Muñoz-Antón J, Valdés M, Martínez-Val JM. High concentration linear Fresnel reflectors. Energy Convers Manag 2013;72:60–8.

Available https://doi.org/10.1016/j.enconman.2013.01.039

Reddy KS, Kumar KR. Estimation of convective and radiative heat losses from an inverted trapezoidal cavity receiver of solar linear Fresnel reflector system. Int J Therm Sci 2014;80:48–57.

Available https://doi.org/10.1016/j.ijthermalsci.2014.01.022

Pye JD, Morrison GL, Behnia M, Mills DR. Modelling of Cavity Receiver Heat Transfer for the Compact Linear Fresnel Reflector; 2003.

Ordóñez F, Flores E, Soria R. Comprehensive analysis of the variables influencing the techno-economic optimization of medium temperature linear Fresnel collectors. Energy Rep 2021;7:5747–61.


Moghimi MA, Craig KJ, Meyer JP. Optimization of a trapezoidal cavity absorber for the Linear Fresnel Reflector. Sol Energy. 2015;119:343–61.

Available: https://doi.org/10.1016/j.solener.2015.07.009

Lin M, Sumathy K, Dai YJ, Wang RZ, Chen Y. Experimental and theoretical analysis on a linear Fresnel reflector solar collector prototype with V-shaped cavity receiver. Appl Therm Eng. 2013;51: 963–72.


Morrison GL, Mills DR, Corporatio S. Solar Thermal Power Systems–Stanwell Power Station Project”. Proc. ANZSES Annu. Conf.; 1999.

Khan MdKA. Technical note Copper oxide coatings for use in a linear solar Fresnel reflecting concentrating collector. Renew Energy. 1999;17:603–8.

Available: https://doi.org/10.1016/S0960-1481(98)00023-8.

Capeillère J, Toutant A, Olalde G, Boubault A. Thermomechanical behavior of a plate ceramic solar receiver irradiated by concentrated sunlight. Sol Energy. 2014;110:174–87.

Available: https://doi.org/10.1016/j.solener.2014.08.039.

Zhu G. New adaptive method to optimize the secondary reflector of linear Fresnel collectors. Sol Energy. 2017;144:117–26.

Available: https://doi.org/10.1016/j.solener.2017.01.005.

Platzer W, Hildebrandt C. 15 - Absorber materials for solar thermal receivers in concentrating solar power (CSP) systems. In: Lovegrove K, Stein W, editors. Conc. Sol. Power Technol., Woodhead Publishing. 2012:469–94.

Atkinson C, Sansom CL, Almond HJ, Shaw CP. Coatings for concentrating solar systems – A review. Renew Sustain Energy Rev. 2015;45:113–22.


Lampert CM. Coatings for enhanced photothermal energy collection I. Selective absorbers. Sol Energy Mater. 1979;1: 319–41.

Available: https://doi.org/10.1016/0165-1633(79)90001-7.

Konttinen P, Lund PD, Kilpi RJ. Mechanically manufactured selective solar absorber surfaces. Sol Energy Mater Sol Cells 2003;79:273–83.

Available : https://doi.org/10.1016/S0927-0248(02)00411-7.

Joly M, Antonetti Y, Python M, Lazo MAG, Gascou T, Hessler-Wyser A, et al. Selective Solar Absorber Coatings on Receiver Tubes for CSP – Energy-efficient Production Process by Sol-gel dip-coating and Subsequent Induction Heating. Energy Procedia. 2014;57:487–96.


Hutchins MG. Spectrally selective solar absorber coatings. Appl Energy. 1979;5: 251–62.

Available: https://doi.org/10.1016/0306-2619(79)90016-3.

Kennedy CE. Review of mid-to high-temperature solar selective absorber materials. National Renewable Energy Laboratory Golden Colorado. 2002 ;1617.

Petitjean JP, Vander Poorten H. Les revêtements sélectifs et leur rôle dans l’amélioration des performances des collecteurs solaires. Surf Technol. 1980;11:229–58.

Zhao S, Uppsala universitet, Teknisk-naturvetenskapliga fakulteten. Spectrally selective solar absorbing coatings prepared by dc magnetron sputtering. Acta Universitatis Upsaliensis; 2007.

Shimizu M, Suzuki M, Iguchi F, Yugami H. High-temperature Solar Selective Absorbers Using Transparent Conductive Oxide Coated Metal. Energy Procedia. 2014;57:418–26.


Harding GL, Lake MR. Sputter etched metal solar selective absorbing surfaces for high temperature thermal collectors. Sol Energy Mater 1981;5:445–64.

Available: https://doi.org/10.1016/0165-1633(81)90079-4

Cuomo JJ, Ziegler JF, Woodall JM. A new concept for solar energy thermal conversion. Appl Phys Lett .1975;26: 557–9.

Available: https://doi.org/10.1063/1.87990.

Farooq M, Green AA, Hutchins MG. High performance sputtered Ni : SiO2 composite solar absorber surfaces. Sol Energy Mater Sol Cells. 1998;54:67–73.

Available: https://doi.org/10.1016/S0927-0248(97)00265-1

Andemeskel A, Suriwong T, Wamae W. Effects of Aluminum Fin Thickness Coated with a Solar Paint on the Thermal Performance of Evacuated Tube Collector. Energy Procedia 2017;138:429–34.


Ho CK, Pacheco JE. Levelized Cost of Coating (LCOC) for selective absorber materials. Sol Energy. 2014;108:315–21.


Boubault A, Ho CK, Hall A, Lambert TN, Ambrosini A. Durability of solar absorber coatings and their cost-effectiveness. Sol Energy Mater Sol Cells. 2017;166:176–84.

Available :https://doi.org/10.1016/j.solmat.2017.03.010

Ky TSM, Ouedraogo S, Ousmane M, Dianda B, Ouedraogo E, Bathiebo DJ. Experimental Study of a Stationary Hot Air Solar Collector Built with Hemispherical Concentrators and Enhanced with Fresnel Lenses. Phys Sci Int J. 2021:8–22.

Available :https://doi.org/10.9734/psij/2021/v25i130233.

Tian Y, Zhao CY. A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy. 2013;104:538–53.


Montes MJ, Abbas R, Barbero R, Rovira A. A new design of multi-tube receiver for Fresnel technology to increase the thermal performance. Appl Therm Eng. 2022;204:117970.


Montes MJ, Rubbia C, Abbas R, Martínez-Val JM. A comparative analysis of configurations of linear Fresnel collectors for concentrating solar power. Energy. 2014;73:192–203.


Rungasamy AE, Craig KJ, Meyer JP. 3-D CFD Modeling of a Slanted Receiver in a Compact Linear Fresnel Plant with Etendue-Matched Mirror Field. Energy Procedia. 2015;69:188–97.


Burkholder F, Kutscher C. Heat Loss Testing of Schott’s 2008 PTR70 Parabolic Trough Receiver; 2009.

Available: https://doi.org/10.2172/1369635