Study of Compact Stars with Buchdahl Potential in 5-D Einstein-Gauss-Bonnet Gravity

Manuel Malaver *

Department of Basic Sciences, Maritime University of the Caribbean, Catia la Mar, Venezuela.

Rajan Iyer

Department of Physical Mathematics Sciences Engineering Project Technologies, Environmental Materials Theoretical Physicist, Engineeringinc International Operational Teknet Earth Global, Tempe, Arizona, United States of America.

Israr Khan

Institute of Numerical Sciences, Kohat University of Science and Technology, Kohat, Pakistan.

*Author to whom correspondence should be addressed.


Abstract

The general theory of relativity has allowed a better understanding of the structure of universe. One of the fundamentals problems in the general relativity is finding exact solutions of the Einstein-Maxwell field equations. Some solutions found applications in astrophysics, cosmology and more recently in the developments inspired by string theory. In this paper, we presented a compact object model in the framework of Einstein-Gauss-Bonnet gravity (EGB) with a linear equation of state considering a metric potential proposed for Buchdahl (1959). The new obtained models satisfy all physical requirements of a physically reasonable stellar object. We analyzed the effect of the Gauss-Bonnet coupling constant α on the main physical characteristics of the model. We checked that the radial pressure, energy density and anisotropy are well defined and are regular in the interior of the star and are dependent of the values of the coupling constant.

Keywords: EGB gravity, linear equation of state, coupling constant, compact object, metric potential


How to Cite

Malaver, Manuel, Rajan Iyer, and Israr Khan. 2022. “Study of Compact Stars With Buchdahl Potential in 5-D Einstein-Gauss-Bonnet Gravity”. Physical Science International Journal 26 (9-10):1-18. https://doi.org/10.9734/psij/2022/v26i9-10762.

Downloads

Download data is not yet available.

References

Kuhfitting PK. Some remarks on exact wormhole solutions. Adv Stud Theor Phys. 2011;5:365.

Bicak J. Einstein equations: exact solutions, Encyclopaedia of Mathematical Physics. 2006;2:165.

Malaver M. Black holes, wormholes and dark energy stars in general relativity. Berlin: Lambert Academic Publishing. ISBN: 978-3-659-34784-9; 2013.

Delgaty MSR, Lake K. Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein’s equations. Comput Phys Commun. 1998;115(2-3):395-415. DOI: 10.1016/S0010-4655(98)00130-1

Schwarzschild K. Über das Gravitationsfeld einer Kugel aus inkompressibler Flussigkeit nach der Einsteinschen Theorie. Math. Phys Technol. 1916:424-34.

Tolman RC. Static solutions of Einstein’s field equations for spheres of fluid. Phys Rev. 1939;55(4):364-73. DOI: 10.1103/PhysRev.55.364

Oppenheimer JR, Volkoff GM. On massive neutron cores. Phys Rev. 1939;55(4): 374-81. DOI: 10.1103/PhysRev.55.374

Chandrasekhar S. The Maximum mass of ideal white dwarfs. Astrophys J. 1931;74:81-2. DOI: 10.1086/143324.

Bhar P, Rahaman F, Ray S, Chatterjee V. Possibility of higher-dimensional anisotropic compact star. Eur Phys J C. 2015;75(5):190. DOI: 10.1140/epjc/s10052-015-3375-z

Bhar P, Govender M. Charged compact star model in einstein-maxwell-gauss- gravity. Astrophys Space Sci. 2019;364(10):186. DOI: 10.1007/s10509-019-3675-0

Gupta YK, Maurya SK. A class of charged analogues of Durgapal and Fuloria superdense star. Astrophys Space Sci. 2011;331(1):135-44. DOI: 10.1007/s10509-010-0445-4

Kiess TE. Exact physical Maxwell-Einstein Tolman-VII solution and its use in stellar models. Astrophys Space Sci. 2012;339(2):329-38. DOI: 10.1007/s10509-012-1013-x

Mafa Takisa PM, Maharaj SD. Some charged polytropic models. GEN Relativ Gravit. Rel.Grav. 2013;45(10):1951-69. DOI: 10.1007/s10714-013-1570-5

Malaver M, Kasmaei HD. Relativistic stellar models with quadratic equation of state. Int J Math Modell Comput. 2020;10: 111-24.

Malaver M. New mathematical models of compact stars with charge distributions. IJSSAM. 2017;2(5):93-8. DOI: 10.11648/j.ijssam.20170205.13

Malaver M. Generalized nonsingular model for compact stars electrically charged. World Sci News. 2018;92:327-39.

Ivanov BV. Static charged perfect fluid spheres in general relativity. Phys Rev D. 2002;65(10):104011. DOI: 10.1103/PhysRevD.65.104011

Sunzu JM, Maharaj SD, Ray S. Quark star model with charged anisotropic matter. Astrophys Space Sci. 2014;354(2):517-24. DOI: 10.1007/s10509-014-2131-4

Sunzu JM. Realistic polytropic models for neutral stars with vanishing pressure anisotropy. Global Journal of Science Frontier Research: A Physics and Space Science. 2018;18. ISSN 2249-4626. Available:https://journalofscience.org/index.php/GJSFR/article/view/2168

Komathiraj K, Maharaj SD. Analytical models for quark stars. Int J Mod Phys D. 2007;16(11):1803-11. DOI: 10.1142/S0218271807011103

Malaver M. Analytical models for compact stars with a linear equation of state. World Sci News. 2016;50:64-73.

Bombaci I. Observational evidence for strange matter in compact objects from the x-ray burster 4U 1820-30. Physiol Rev. 1997;55:1587-90.

Thirukkanesh S, Maharaj SD. Charged anisotropic matter with a linear equation of state. Class Quantum Grav. 2008; 25(23):235001. DOI: 10.1088/0264-9381/25/23/235001

Dey M, Bombaci I, Dey J, Ray S, Samanta BC. Strange stars with realistic quark vector interaction and phenomenological density-dependent scalar potential. Phys Lett. 1998;438(1-2):123-8. DOI: 10.1016/S0370-2693(98)00935-6

Usov VV. Electric fields at the quark surface of strange stars in the color-flavor locked phase. Phys Rev D. 2004;70(6):067301. DOI: 10.1103/PhysRevD.70.067301

Feroze T, Siddiqui AA. Charged anisotropic matter with quadratic equation of state. Gen Relativ Gravit. 2011; 43(4):1025-35. DOI: 10.1007/s10714-010-1121-2

Thirukkanesh S, Ragel FC. Exact anisotropic sphere with polytropic equation of state. Pramana J Phys. 2012;78(5):687-96. DOI: 10.1007/s12043-012-0268-7

Malaver M. Analytical model for charged polytropic stars with Van der Waals Modified Equation of State. Am J Astron Astrophys. 2013;1(4):37-42. DOI: 10.11648/j.ajaa.20130104.11

Tello-Ortiz F, Malaver M, Rincón Á, Gomez-Leyton Y. Relativistic anisotropic fluid spheres satisfying a non-linear equation of state. Eur Phys J C. 2020; 80(5):371. DOI: 10.1140/epjc/s10052-020-7956-0

Esculpi M, Malaver M, Aloma E. A Comparative Analysis of the Adiabatic Stability of Anisotropic Spherically Symmetric solutions in General Relativity. Gen Relativ Gravit. 2007;39(5):633-52. DOI: 10.1007/s10714-007-0409-3

Cosenza M, Herrera L, Esculpi M, Witten L. Evolution of radiating anisotropic spheres in general relativity. Phys Rev D. 1982;25(10):2527-35. DOI: 10.1103/PhysRevD.25.2527

Herrera L. Cracking of self-gravitating compact objects. Phys Lett. 1992;165(3): 206-10. DOI: 10.1016/0375-9601(92)90036-L

Herrera L, Nuñez L. Modeling ’hydrodynamic phase transitions’ in a radiating spherically symmetric distribution of matter. Astrophys J. 1989;339:339-53. DOI: 10.1086/167300

Herrera L, Ruggeri GJ, Witten L. Adiabatic contraction of anisotropic spheres in general relativity. Astrophys J. 1979;234:1094-9. DOI: 10.1086/157592

Herrera L, Jimenez L, Leal L, Ponce de Leon J, Esculpi M, Galina V. Anisotropic fluids and conformal motions in general relativity. J Math Phys. 1984;25:3274-8.

Malaver M. Quark star model with charge distributions. Open Sci J Mod Phys. 2014;1:6-11.

Malaver M. Strange quark star model with quadratic equation of state. Front Math Appl. 2014;1:9-15.

Malaver M. Charged anisotropic models in a modified Tolman IV space time. World Sci News. 2018;101:31-43.

Malaver M. Charged stellar model with a prescribed form of metric function y(x) in a Tolman VII spacetime. World Sci News. 2018;108:41-52.

Malaver M. Classes of relativistic stars with quadratic equation of state. World Sci News. 2016;57:70-80.

Sunzu JM, Danford P. New exact models for anisotropic matter with electric field. Pramana J Phys. 2017;89(3):44. DOI: 10.1007/s12043-017-1442-8

Bowers RL, Liang EPT. Anisotropic spheres in general relativity. Astrophys J. 1974;188:657-65. DOI: 10.1086/152760

Sokolov AI. Phase transitions in a superfluid neutron liquid. Sov Phys JETP. 1980;52:575-6.

Bhar P, Murad MH, Pant N. Relativistic anisotropic stellar models with Tolman VII spacetime. Astrophys Space Sci. 2015;359(1):13. DOI: 10.1007/s10509-015-2462-9

Malaver M. Some new models of anisotropic compact stars with quadratic equation of state. World Sci News. 2018;109:180-94.

Malaver M. Charged anisotropic matter with modified Tolman IV potential. Open Sci J Mod Phys. 2015;2(5):65-71.

Feroze T, Siddiqui AA. Some exact solutions of the einstein-Maxwell equations with a quadratic equation of state. J Korean Phys Soc. 2014;65(6):944-7. DOI: 10.3938/jkps.65.944

Sen B, Grammenos Th, Bhar P, Rahaman F. Mathematical modeling of compact anisotropic relativistic fluid spheres in higher spacetime dimensions. Math Meth Appl Sci. 2018;41(3):1062-7. DOI: 10.1002/mma.4128

Kaluza T. Unitätsproblem in der Physik. Sitz. preuss acad wiss. Berlin. 1921; 966-72.

Klein O. Klein O. Quantentheorie und fünfdimensionale Relativitätstheorie. Z Physik. 1926;37(12):895-906. DOI: 10.1007/BF01397481

Paul BC, Dey S. Relativistic star in higher dimensions with finch and SKea geometry. Astrophys Space Sci. 2018;363(11):220. DOI: 10.1007/s10509-018-3438-3

Bhar P, Singh KN, Tello-Ortiz F. Compact star in tolman-kuchowicz spacetime in background of Einstein-Gauss-Bonnet gravity. Eur Phys J C. 2019;79(11):922. DOI: 10.1140/epjc/s10052-019-7438-4

Bhar P, Govender M, Sharma R. A comparative study between EGB gravity and GTR by modeling compact stars. Eur Phys J C. 2017;77(2):109. DOI: 10.1140/epjc/s10052-017-4675-2

Rezaei Akbarieh AR, Kazempour S, Shao L. Cosmological perturbations in Gauss- Bonnet quasi-dilaton massive gravity. Phys Rev D. 2021;103(12):123518. DOI: 10.1103/PhysRevD.103.123518

Oikonomou VK. A refined Einstein–Gauss–Bonnet inflationary theoretical framework. Class Quantum Grav. 2021;38(19): 195025. DOI: 10.1088/1361-6382/ac2168

Malaver M, Iyer R, Kar A, Sadhukhan S, Upadhyay S, Gudekli E. Buchdahl spacetime with compact body solution of charged fluid and scalar field theory. Available:https://arxiv.org/abs/2204.00981

Iyer R, Markoulakis E. Theory of a superluminous vacuum quanta as the fabric of Space. Astron Int J. 2021;5(2):43-53. DOI: 10.15406/paij.2021.05.00233

Iyer R. Absolute genesis fire fifth dimension mathematical physics: Absolute genesis physics conjectural mathematics, Amazon. Vol. 2022; 2000. International corporation publisher, ISBN-13: 978-0970689801, kindle edition. Available:Engineeringinc.com

Iyer R, O’Neill C, Malaver M, Hodge J, Zhang W, Taylor E. Modeling of gage discontinuity dissipative physics. Can J Pure Appl Sci. 2022;16(1):5367-77. Publishing Online ISSN: 1920-3853; Print ISSN: 1715-9997.

Buchdahl HA. H.A. General relativistic fluid spheres. Phys Rev. 1959;116(4):1027-34. DOI: 10.1103/PhysRev.116.1027

Durgapal MC, Bannerji R. New analytical stellar model in general relativity. Phys Rev D. 1983;27(2):328-31. DOI: 10.1103/PhysRevD.27.328