The Emergent Entangled Informational Universe

Olivier Denis *

Entropic Information Space, 13 Rue Joseph Nicolas 4300, Waremme, Belgium.

*Author to whom correspondence should be addressed.


The dream of capturing the workings of the entire universe in a single equation or a simple set of equations is still pursued. A set of five new equivalent formulations of entropy based on the introduction of the mass of the information bit in Louis de Broglie's hidden thermodynamics and on the physicality of information, is proposed, within the framework of the emergent entangled informational universe model, which is based on the principle of strong emergence, the mass-energy-information equivalence principle and the Landauer’s principle. This model can explain various process as informational quantum processes such energy, dark matter, dark energy, cosmological constant and vacuum energy. The dark energy is explained as a collective potential of all particles with their individual zero-point energy emerging from an informational field, distinct from the usual fields of matter of quantum field theory, associated with dark matter as having a finite and quantifiable mass; while resolving the black hole information paradox by calculating the entropy of the entangled Hawking radiation, and shedding light on gravitational fine-grained entropy of black holes. This model explains the collapse of the wave function by the fact that a measure informs the measurer about the system to be measured and, this model is able to invalidate the many worlds interpretation of quantum mechanics and the simulation hypothesis.

Keywords: Entropy, black hole, dark matter, dark energy, quantum gravity, collapse, information paradox, cosmological constant

How to Cite

Denis , O. (2023). The Emergent Entangled Informational Universe . Physical Science International Journal, 27(1), 54–81.


Download data is not yet available.


Landauer R. Irreversibility and heat generation in the computing process. IBM Journal of Research and Development. 1961;5(3):183–191.DOI:, Google Scholar, Crossref

de Broglie L. Thermodynamics of isolated particle (Hidden Thermodynamics of Particles). Gauthier-Villars, Paris, 1964.

Vopson MM. The mass-energy-information equivalence principle. AIP Adv. 2019;9(9):095206.

DOI:, Google Scholar, Scitation, ISI

Vopson MM. Experimental protocol for testing the mass–energy–information equivalence principle. AIP Advances. 2022;12:035311.DOI:

Denis O. (2022). Entropic Information & Black Hole: Black Hole Information Entropy The Missing Link. Physical Science International Journal, 26(1):20-34. DOI:

Denis O. The entangled informational universe. Physical Science International Journal. 2022; 26(4):1-16.


Hawking SW. (1974-03-01). Black hole explosions?". Nature. 1974 ;248(5443):30–31.

Bibcode:Natur.248...30H. DOI:10.1038/248030a0. ISSN 1476-4687. S2CID 4290107.

Casini H. Relative entropy and the Bekenstein bound. Class Quantum Grav. 2008;25(20):205021.

DOI: 10.1088/0264-9381/25/20/205021. arXiv:0804.2182]

Bousso RJ. High energy phys. Holography in general space-times. Bibcode 1999; 6:028.

Available:arXiv:hep- th/9906022:1999JHEP:06.028B. DOI: 10.1088/1126-6708/1999/06/028. S2CID 119518763

Bousso R. A covariant entropy conjecture. J High Energy Phys. 1999;7:004. Available:arXiv:hep-th/9905177:4.

DOI: 10.1088/1126-6708/1999/07/004. Bibcode R. S2CID 9545752; 07(004B):1999JHEP. DOI: 10.1088/1126-6708/1999/07/004

Bousso R. The holographic principle for general backgrounds. Class Quantum Grav. 2000;17(5):997-1005. Available:arXiv:hep-th/9911002. DOI: 10.1088/0264-9381/17/5/309. Bibcode R. 2000CQGra:17.997B.

DOI: 10.1088/0264-9381/17/5/309. S2CID 14741276

Bekenstein JD. Holographic bound from second law of thermodynamics. Phys Lett B. 2000;481(2-4):339-45. Available:arXiv:hep-th/0003058 DOI: 10.1016/S0370-2693(00)00450-0. Bibcode JD. PhLB. 2000:481.339B.

DOI: 10.1016/S0370-2693(00)00450-0. S2CID 119427264

Bousso R, Raphael. The holographic principle (PDF). Rev Mod Phys. 2002 RvMP:74.825B.;74(3):825-74. Available:arXiv:hep-th/0203101. DOI: 10.1103/RevModPhys.74.825. S2CID 55096624. Archived from the original

Bekenstein JD. Information in the Holographic Universe. Sci Am. August 2003;289(2):58-65. Mirror link. DOI: 10.1038/scientificamerican0803-58, PMID 12884539

Bousso R, Flanagan ÉÉ, Marolf D. Simple sufficient conditions for the generalized covariant entropy bound. Phys Rev D. 2003;68(6):064001. Available: arXiv:hep-th/0305149. DOI: 10.1103/PhysRevD.68.064001. Bibcode R. 2003PhRvD. 68f4001B. DOI:10.1103/PhysRevD.68.064001. S2CID 119049155

Bekenstein JD. Black holes and information theory. Contemp Phys. 2004; 45(1):31-43. Available:arXiv:quant-ph/0311049. DOI: 10.1080/00107510310001632523 Bibcode JD. 2004Con. Physiol.45...31B. DOI: 10.1080/00107510310001632523. S2CID 118970250.

Tipler FJ. The structure of the world from pure numbers (PDF). Available from: arXiv:0704.3276. Rep Prog Phys. Prog Physiol [paper]. 903 of the Rep. 2005;68(4):897-964;2005RPPh... 68.897T. DOI:10.1088/0034-4885/68/4/R04. Bibcode FJ. Tipler gives a number of arguments for maintaining that Bekenstein's original formulation of the bound is the correct form. See in particular the paragraph beginning with "A few points ..." on p (or p. 9 of the arXiv version):and the discussions on the Bekenstein bound that follow throughout the paper.

Ryu S, Takayanagi T. Aspects of holographic entanglement entropy. J High Energy Phys. 2006-08-21;2006(8). Available:arXiv:hep-th/0605073:045-. DOI: 10.1088/1126-6708/2006/08/045. Bibcode S. 2006JHEP... 08..045R.. DOI: 10.1088/1126-6708/2006/08/045. ISSN 1029-8479. S2CID 14858887.

Stanford Institute for Theoretical Physics. Gravity and entanglement, [retrieved 2017- 5-7]; 2015-10-15.

Denis O. The Dark Side of the Entangled Informational Universe. Physical Science International Journal. 2022;26(6):39-58. DOI:

Charles H. Bennett. Notes on landauer's principle, reversible computation and maxwell's demon. (PDF):Studies in History and Philosophy of Modern Physics. 2003;34(3):501–510. arXiv:physics/0210005, Bibcode:2003SHPMP..34..501B, doi:10.1016/S1355-2198(03)00039-X, S2CID 9648186, retrieved 2015-02-18.

Daffertshofer A, Plastino AR. Landauer’s, principle and the conservation of information. Phys Lett A. 2005;342(3):213-6. DOI: 10.1016/j.physleta.2005.05.058.

Zeilinger A. A foundation principle of quantum physics. Found Phys. 1999; 29(4):631-43.

DOI: 10.1023/A:101882041090

Plenio MB, Vitelli V. The physics of forgetting: Landauer’s erasure principle and information theory. Contemp Phys. 2001;42(1):25-60. DOI: 10.1080/00107510010018916.

Ladyman J, Presnell S, Short AJ, Groisman B. The connection between logical and thermodynamic irreversibility. Stud Hist Philos Mod Phys. 2007;38(1): 58-79. DOI: 10.1016/j.shpsb.2006.03.007.

Barbara Piechocinska, Information erasure, Phys. Rev. A 61, 062314 – Published 17 May 2000, DOI:

Braunstein SL, Pati AK. Quantum information cannot be completely hidden in correlations: Implications for the black-hole information paradox. Phys Rev Lett. 2007;98(8):080502. Available: gr-qc/0603046.

DOI:10.1103/PhysRevLett.98.080502, PMID 17359079

Lee JW, Lee J, Kim HC. Quantum informational dark energy: Dark energy from forgetting. arXiv E-Print. 2008;8. [arXiv/0709.0047]

Bérut A, Arakelyan A, Petrosyan A, Ciliberto S, Dillenschneider R, Lutz E. Experimental verification of Landauer’s principle linking information and thermodynamics. Journal Nature on March 8. Nature. 2012;483(7388):187-9.

DOI:10.1038/nature10872, PMID 22398556

Preskill J. Quantum computation, course information for physics 219/computer Science 219 (formerly physics 229). Available: /ph229/

Wheeler JA. Information, physics, quantum: the search for links’ at reproduced from. Proceedings of the 3rd international symposium. Tokyo: Foundations of Quantum Mechanics. 1989;354-68.

Dembski W. How informational realism dissolves the mind–body problem’ at mind and matter: modern dualism, idealism and the empirical sciences; forthcoming.

Ghirardi GC, Rimini A, Weber T. A general argument against superluminal transmission through the quantum mechanical measurement process. Lettere Nuovo Cimento. March 1980;27(10):293-8. DOI: 10.1007/BF02817189. S2CID 121145494.

John Preskill Course Information for Physics 219/Computer Science 219, Quantum Computation (Formerly Physics 229).

Lloyd S. Almost any quantum logic gate is universal. Phys Rev Lett. 1995;75(2): 346-9. DOI: 10.1103/PhysRevLett.75.346, PMID 10059671.

Deutsch D, Barenco A, Ekert A. Proc R Soc Lond A. 1995;449:669-77.

el-Hani, Charbel Nino, Antonio Marcos Pereira. Higher-level Descriptions: Why Should We Preserve Them? », in Peter Bøgh Andersen, Claus Emmeche, Niels Ole Finnemann, and Peder Voetmann Christiansen (eds.):Downward Causation: Minds, Bodies and Matter, Aarhus (Danemark):Aarhus University Press; 2000.

Bedau, Mark A. weak emergence (PDF); 1997.

Laughlin, Robert. A Different Universe: Reinventing Physics from the Bottom Down, Basic Books; 2005. ISBN 978-0-465-03828-2.

Aristotle, Metaphysics (Aristotle):Book VIII (Eta) 1045a 8–10: "... the totality is not, as it were, a mere heap, but the whole is something besides the parts ...", i.e., the whole is other than the sum of the parts.

Everett, Allen, Roman, Thomas. Time travel and warp drives. University of Chicago Press. 2012;167. ISBN 978-0-226-22498-5.

Bousso, Raphael (2004-02-12). Bound states and the Bekenstein bound". Journal of High Energy Physics. 2004 (2): 025. arXiv:hep-th/0310148. Bibcode:2004JHEP...02..025B. DOI:10.1088/1126-6708/2004/02/025. ISSN 1029-8479. S2CID 17662307.

Heylighen F, Joslyn C. Cybernetics and second order cybernetics. In: Meyers RA, editor, Encyclopedia of physical science & technology. 3rd ed. Vol. 4. New York: Academic Press. 2001 ;155-70. Available:

(accessed on 02 02 2023).

Denis O. Entropic information theory: formulae and quantum gravity bits from Bit. Phys Sci Int J. 2021;25(9):23-30. DOI: 10.9734/psij/2021/v25i930281.

Piechocinska B. Information erasure. Phys Rev A. 2000;61(6):1-062314:9. DOI: 10.1103/PhysRevA.61.062314

Almheiri A, Hartman T, Maldacena J, Shaghoulian E, Tajdini A. The entropy of Hawking radiation.


Van Raamsdonk M. Lectures on gravity and entanglement. New Front Fields Strings. ISBN 978-981-314-943-4. S2CID 119273886. August 31 2016:297-351. Available: arXiv:1609.00026. DOI: 10.1142/9789813149441_0005.

Jacob D Bekenstein. Black holes and entropy, Phys. Rev. D 7, 2333 – Published 15 April 1973 An article within the collection: 2015 - General Relativity’s Centennial and the Physical Review D 50th Anniversary Milestones; 2019.

Bekenstein JD. How does the entropy / information bound work? Found Phys. 2005;35(11):1805-23. Available:arXiv:quant-ph/0404042. DOI: 10.1007/s10701-005-7350-7. Bibcode. 2005FoPh... 35.1805B. DOI: 10.1007/s10701-005-7350-7.S2CID. 118942877.

Jacob B. Bekenstein bound. Scholarpedia. 2008;3(10):7374.

Ryu S, Takayanagi T. Holographic derivation of entanglement entropy from AdS/CFT. Phys Rev Lett. 2006, Available:arXiv:hep- th/0603001;96(18):181602. DOI: 10.1103/PhysRevLett.96.181602, PMID 1671235.

Page DN. The Bekenstein bound, Available from: arXiv:1804.10623v1 [hep- th]; April 27 2018.

Fukami M. Introduction to the Ryu– Takayanagi formula (PDF). 2018;2.


(accessed on 02 02 2023)

Penington G. Entanglement wedge reconstruction and the information paradox. J High Energ Phys; 2020.

Available:arXiv:1905.08255 [hep- th];2020(9). DOI: 10.1007/JHEP09(2020)002.

Almheiri A, Engelhardt N, Marolf D, Maxfield H. The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole. J High Energ Phys; 2019. Available:arXiv:1905.08762[hep- th];2019(12).

DOI: 10.1007/JHEP12(2019)063.

Hubeny VE, Rangamani M, Takayanagi T. A Covariant holographic entanglement entropy proposal. J Hepatol; 2007.Available:arXiv:0705.0016[hep- th];07:062.

Lewkowycz A, Maldacena J. Generalized gravitational entropy. J Hepatol; 2013. Available:arXiv:1304.4926 [hep- th];08:090.

Barrella T, Dong X, Hartnoll SA, Martin VL. Holographic entanglement beyond classical gravity. J Hepatol; 2013. Available:arXiv:1306.4682 [hep- th];09:109.

Faulkner T, Lewkowycz A, Maldacena J. Quantum corrections to holographic entanglement entropy. J Hepatol; 2013. Available:arXiv:1307.2892 [hep- th];11:074.

Engelhardt N, Wall AC. Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime. J Hepatol. 2015, Available:arXiv:1408.3203 [hep-th];01:073.

Almheiri A, Mahajan R, Maldacena J, Zhao Y. The page curve of hawking radiation from semiclassical geometry. J High Energ Phys; 2020. Available:arXiv:1908.10996 [hep-th]. 2020;(3). DOI: 10.1007/JHEP03(2020)149.

Ade PAR, et al. Planck 2013 results. XVI. Cosmological Parameters Astron Astrophys. 2014;571:A16.

Hawking SW. Particle creation by black holes. Commun Math Phys. 1975; 43(3):199-220. DOI: 10.1007/BF02345020.

Davies PCW. Why is the physical world so comprehensible? In: Zurek WH, editor. Complexity, entropy and the physics of information. Redwood City, CA: Addison- Wesley. 1990;61.

Lloyd S. Computational capacity of the universe. Phys Rev Lett. 2002; 88(23):237901. DOI: 10.1103/PhysRevLett.88.237901, PMID 12059399.

The information content of the Universe and the implications for the missing Dark Matter; 2019. DOI: 10.13140/RG.2.2.19933.46560.

Eadie GM, Harris WE. Astrophys J. 2016;829(2).

Conselice CJ, Wilkinson A, Duncan K, Mortlock A. The evolution of galaxy number density at z < 8 and its implications. Astrophys J. 2016;830(2):83. DOI: 10.3847/0004-637X/830/2/83.

Gough MP. Information equation of state. Entropy. 2008;10(3):150-9. DOI: 10.3390/entropy-e10030150.

Vopson MM. The information catastrophe. AIP Adv. 2020;10(8):085014. DOI: 10.1063/5.0019941.

Melvin M. Vopsona estimation of the information contained in the visible matter of the universe. AIP Adv. 2021;11: 105317. DOI: 10.1063/5.0064475.

Lloyd S. Ultimate physical limits to computation. Nature. 2000;406(6799): 1047-54. DOI: 10.1038/35023282, PMID 10984064.

Bennett CH. Logical reversibility of computation. IBM J Res Dev. 1973; 17(6):525-32. DOI: 10.1147/rd.176.0525.

Bennett CH. The thermodynamics of computation – A review. Int J Theor Phys. 1982;21(12):905-40.DOI: 10.1007/BF02084158.

Bennett CH. Notes on the history of reversible computation. IBM J Res Dev. 1988;32(1):16-23. DOI: 10.1147/rd.321.0016.

Landauer R. Dissipation and noise immunity in computation and communication. Nature. 1988;335(6193): 779-84. DOI: 10.1038/335779a0.

Landauer R. Computation: A fundamental physical view. Phys Scr. 1987;35(1): 88- 95.DOI: 10.1088/0031-8949/35/1/021.

Bennett CH. Information physics in cartoons. Superlatt Microstruct. 1998;23(3- 4):367-72. DOI: 10.1006/spmi.1997.0558.

Feynman RP. Lectures on computation. Penguin Books. 1999;137-84.

Peebles PJE. Principles of physical cosmology. Princeton University Press; 1993.

Gough MP. Information dark energy can resolve the Hubble tension and is falsifiable by experiment. Entropy (Basel). 2022;24(3): 385. DOI: 10.3390/e24030385, PMID 35327896.

Albert Einstein, "Comment on Schrödinger's Note 'On a System of Solutions for the Generally Covariant Gravitational Field Equations'".


O'Raifeartaigh C, O'Keeffe M, Nahm W, Mitton S. 'Einstein's 1917 Static Model of the Universe: A Centennial Review'. Eur. Phys. J. (H). 2017;42:431–474.

Kragh H. Preludes to dark energy: zero-point energy and vacuum speculations". Archive for History of Exact Sciences. 2012;66(3):199–240. arXiv:1111.4623. DOI:10.1007/s00407-011-0092-3. S2CID 118593162.


(accessed on 02 02 2023).

Bousso, Penington Entanglement Wedge For Gravitating Regions; Sept 2022.Available:

Bousso, Raphael, Shahbazi-Moghaddam, Arvin. Island finder and entropy bound. Physical Review D. 2021;103. DOI:10.1103/PhysRevD.103.106005