Determination of the Seebeck Coefficient and Other Thermoelectric Parametersusing Specific Resistivity and Concentration of Charge Carriers of N-Si0.96Ge0.04 Alloy Irradiated by 60Co γ-photons

Rafiel Tkhinvaleli

Institute of Cybernetics of Georgian Technical University, Georgia.

Lasha Loria

Tbilisi State University, Georgia.

Zurab Adamia

Tbilisi State University, Georgia and University of Georgia, Georgia.

Irakli Nakhutsrishvili *

Institute of Cybernetics of Georgian Technical University, Georgia.

*Author to whom correspondence should be addressed.


Abstract

The thermoelectric alloy N-Si0.96Ge0.04-P irradiated by 60Co gamma-photons is been studied. The temperature dependences of the Seebeck coefficient, power and electronic quality factors, as well as the universal electrical conductivity and effective masses of electrons in the interval (250400)°C are calculated. All these dependences are different from the results previously obtained for SixGe1-x with other compositions (except for effective mass). This should be associated with a significant difference in specific resistivities and concentrations of charge carriers.

Keywords: SiGe alloy, seebeck coefficient, γ-radiation


How to Cite

Tkhinvaleli , R., Loria , L., Adamia , Z., & Nakhutsrishvili , I. (2024). Determination of the Seebeck Coefficient and Other Thermoelectric Parametersusing Specific Resistivity and Concentration of Charge Carriers of N-Si0.96Ge0.04 Alloy Irradiated by 60Co γ-photons. Physical Science International Journal, 28(1), 16–22. https://doi.org/10.9734/psij/2024/v28i1817

Downloads

Download data is not yet available.

References

Raag V. Dopant precipitation in silicon-germanium alloys. Proc. 7th Intersociety energyconversion engineering conference, San Diego, CA, USA, 25 September; 1972: 4454974. Available:https://api.semanticscholar.org/CorpusID:136583796

Rowe DM. Recent developments in thermoelectric materials. Appl. Energy. 1986;24:139. Available:https://doi.org/10.1016/0306-2619(86)90066-8

Rosi FD. The research and development of silicon-germanium thermoelements for power generation. MRS Online Prooc. Libr. 1991; 234: 3. Available:https://doi.org/10.1557/PROC-234-3

Basu R, Singh A. High temperature Si–Ge alloy towards thermoelectric applications. Materials Today Phys. 2021;21:100468. Available:https://doi.org/10.1016/j.mtphys.2021.100468

Cook B. Silicon–Germanium: The legacy lives on Energy. 2022;15:2957. Available:https://doi.org/10.3390/en15082957

Schwinge C, Kühnel K, Roy L et al. Appl. Optimization of LPCVD phosphorous-doped SiGe thin films for CMOS-compatible thermoelectric applications. Phys. Lett. 2022;120:031903. Available:https://doi.org/10.1063/5.0076945

Big-Alabo A. Finite element modelling and optimization of Ge/SiGe super lattice based thermoelectric generators. Appl. Sci. 2021;3:189. Available:https://doi.org/10.1007/s42452-020-04122-x

Jang J, Kim Y, Park J. Electrical and structural characteristics of excimer laser-crystallized polycrystalline Si1-xGex thin-film transistors. Materials. 2019;12:1739. https://doi.org/10.3390/ma12111739

Murata H, Nozawa K, Suzuki T et al. Si1-xGex anode synthesis on plastic films for flexible rechargeable batteries. Sci. Report. 2022;12:13779. Available:https://doi.org/10.1038/s41598-022-18072-4

Idda A, Ayat L, Dahbi N. Improving the performance of hydrogenated amorphous silicon solar cell using a-SiGe: H alloy. Ovonic Res. 2019;15:271.

Singh AK, Kumra M, Kumar D, Singh SN. Heterostructure silicon and germanium alloy based thin film solar cell efficiency analysis. Engin. and Manufacturing. 2020; 2:29. DOI: 10.5815/ijem.2020.02.03

Zimmerman H. SiGe photodetectors, in Silicon Optoelectronic Integrated Circuits, eds. K.Chun, K.Itoh, T.H.Lee et al., Vienna, Austria, 2018:435. DOI: 10.1007/978-3-662-09904-9

Aberl J, Brehm M, Fromherz T et al. SiGe quantum well infrared photo detectors on strained-silicon-on-insulator. Opt. Express. 2019;27:32009. Available:https://doi.org/10.1364/OE.27.032009

Koumoto K, Terasaki I, Funahashi R. Complex oxide materials for potential thermoelectric applications. MRS Bull. 2006;31:206. Available:https://doi.org/10.1557/mrs2006.46

Ellis BL, Nazar LF. Sodium and sodium-ion energy storage batteries. Curr. Opinion SolidState and Mater. Sci. 2012;16:168. DOI: 10.1016/j.cossms.2012.04.002

Ruzin A, Marunko S, Gusakov Y. Study of bulk silicon-germanium radiation detectors. Appl.Phys. 2004;95:5081. DOI: 10.1063/1.1688462

Ruzin A, Marunko S, Abrosimov NV, Riemann H. Dark properties and transient current response of Si0.95Ge0.05 n+p devices. Nucl. Instrum. Methods, Phys. Res. Sect. A. 2004;518:373. Available:https://doi.org/10.1016/j.nima.2003.11.025

Erko A, Abrosimov NV, Alex SV. Laterally-graded SiGe crystals for high resolution synchrotron optics. Crystal Res. Techn. 2002;37:685. Available:https://doi.org/10.1002/1521-4079(200207)37:7<685::AID-CRAT685>3.0.CO;2-Z

Londos CA, Sgourou EN, Hall D, Chroneos A. Vacancy-oxygen defects in silicon: The impact of isovalent doping. Mater. Sci.: Mater Electron. 2014;25:2395. Available:https://doi.org/10.1007/s10854-014-1947-6

Kurashvili I, KimeridzeT, Chubinidze G, et al. Electrophysical properties of monocrystalline n-Si+0.4at%Ge:P alloy irradiated by 60Co gamma photons. Georgian Scientists. 2022;4:74. Available:https://doi.org/10.52340/gs.2022.04.04.09

Bokuchava G, Barbakhadze K, Nakhutsrishvili I. Thermoelectric parameters of alloy p-Si0.7Ge0.3. Bull. Georg. Acad. Sci. 2023;17:33.

Barbakadze K, Kakhniashvili G, Adamia Z, Nakhutsrishvili I. Determination of electronic quality factor, universal electrical conductivity, effective mass and mobility of charge carriers of alloy n-SixGe1-x. Materials Sci. Res and Rev. 2023;6: 730.

Bokuchava G, Barbakadze K, Nakhutsrishvili I. On the thermoelectric alloy n-SixGe1-x. Material Sci. & Engin. 2023;7:54. Available:https://doi.org/10.15406/mseij.2023.07.00204

Zhang X, Bu Z, Shi X et al. Electronic quality factor for thermoelectrics. Sci. Adv. 2020;6:eabc0726. DOI: 10.1126/sciadv.abc0726

Snyder DJ, Pereyra A, R.Gurunathan R. Effective mass from Seebeck coefficient. Adv. Funct. Materials. 2022; 32: 2112772. Available:https://doi.org/10.1002/adfm.202112772

Wang J, Yang W. Effects of irradiation with gamma and beta rays on semiconductor Hall effect devices. Nucl. Instruments and Methods Phys. Res. 2008;266:3583. Available:https://doi.org/10.1016/j.nimb.2008.06.017

Kurashvili I, Darsavelidze G, Kimeridze T et al. Peculiarities of internal friction and shear modulus-rays monocrystalline SiGe alloys irradiated in  in 60Co. Materials and Metallurgical Engineering. 2019;13:438.

Chen Y, Fang X, Ding X et al. Structural features and photoelectric properties of Si-doped GaAs under gamma irradiation. Nanomater. 2020;10:340. Available:https://doi.org/10.3390/nano10020340

Alekperov AS, Jabarov SH, Mirzayev MN et al. Effect of gamma irradiation on microstructure of the layered Ge0.995Nd0.005S. Modern Phys. Lett. B. 2019;33:1950104. Available:https://doi.org/10.1142/S0217984919501045

Xiang T, Liu S, Wang X et al. Molecular dynamics simulations of displacement damage in SiGe alloys induced by single and binary primary knock-on atoms under different temperatures. Radiat. Effects and Defects Sol. 2023;7:1.