Comparison of the Decomposition of Static Interquark Potential in SU(3) Lattice Quantum Chromodynamics

Chitra Kandpal *

Kumaun University, Nainital-263001, India.

*Author to whom correspondence should be addressed.


Abstract

We study the decomposition of interquark potential and quantitatively compare the utility of V(r) \(\approx\) Vabel (r) + Voffdiag (r) and V(r) \(\approx\) Vmon(r) + Vmod(r) by calculating respective average relative deviation. We also study the slope of Vabel(r) and compare it with the slope of original SU(3) interquark potential over large distances so that we can study their exact confinement behavior. Remarkably, we found that for 244 lattice at \(\beta\) = 6.0, the sum of potentials Vmon(r) + Vmod(r)  matches the original interquark potential V(r) more than Vabel(r) + Voffdiag(r). Comparing our results we found that perfect Abelian dominance is not seem to satisfy even for sufficiently large physical spatial volume (approximately larger than(2fm)3).

Keywords: Quark confinement, dual superconductor picture, monopole, abelian projection, maximally abelian gauge, interquark potential, abelian dominance, string tension, lattice QCD


How to Cite

Kandpal, Chitra. 2024. “Comparison of the Decomposition of Static Interquark Potential in SU(3) Lattice Quantum Chromodynamics”. Physical Science International Journal 28 (4):52-56. https://doi.org/10.9734/psij/2024/v28i4836.

Downloads

Download data is not yet available.

References

Rothe HJ, Lattice Gauge Theories, 4th ed. (World Scientific, Singapore, 2012), and references therein.

Nambu Y, Phys. Rev. D10, 4262 (1974); G. ’t Hooft, in High Energy Physics, (EditoriceCompositori, Bologna, 1975); S. Mandelstam, Phys. Rept. 1976;23:245.

’t Hooft G.Nucl. Phys. B190.1981;455.

Ezawa ZF, Iwazaki A, Phys. Rev. D 25; 2681

Kronfeld AS, Schierholz G, Wiese U-J, Nucl.Phys. B293 461 (1987); A. S. Kronfeld, ML. Laursen,G. Schierholz, and U.-J. Wiese, Phys. Lett. B198, 1987;516.

Suzuki T,Yotsuyanagi I. Phys. Rev. D42. 1990;4257.

Stack JD, Neiman SD, Wensley RJ, Phys. Rev.D. 1994;50:3399.

Amemiya K, Suganuma H. Phys. Rev. D. 1999;60:114509.

Bali GS, Schilling K. Phys. Rev. D47:1993;661.

Takahashi TT, Matsufuru H, Nemoto Y, Suganuma H, Phys. Rev. Lett. 86, 18 (2001);T. T. Takahashi,H. Suganuma, Y. Nemoto, and H. Matsufuru, Phys. Rev.D65: 2002;114509.

Hideo Suganuma and Naoyuki Sakumichi, AIP Conference Proceedings. 2016; 1701:020016.

Available:https://doi.org/10.1063/1.4938605

Decomposition of the static potential in theMaximal Abelian gauge V. Bornyakov, I. Kudrov, R. Rogalyov,arXiv:2201.04035 [hep-lat]; 2022.

Bornyakov VG, Polikarpov MI, Schierholz G, Suzuki T,Syritsyn SN, Nucl. Phys. B Proc. Suppl. 2006;153:25-32. [arXiv:hep-lat/0512003 [hep-lat]].

Smit J, van der Sijs A, Nucl. Phys. B.1991;355:603.

NoyukiSakumichi and Hideo Suganuma Phys.Rev. D. 2021;90:111501. Available:https://arxiv.org/pdf/1406.2215.pdf

Kandpal, Chitra, Singh, Sukhwinder & Mishra, Devraj. Study on Abelian dominance of Interquark potential in SU (3) Lattice QCD using simulation Techniques. Journal of Mountain Research. 2019;14. DOI: 10.51220/jmr.v19i1.12.

Bornyakov VG, Kudrov IE. JETP Letters. 2023;117:328–331 Available:https://doi.org/10.48550/arXiv.2301.03076 ,arXiv:2301.03076 [hep-lat]

Bornyakov VG, Kudrov I, Rogalyov RN. Phys. Rev. D.2022;105:054519. DOI:10.1103/PhysRevD.105.054519, arXiv:2101.04196 [hep-lat]

Stack JD, Tucker WW, Wensley RJ, Nucl. Phys.B639. 2002;203.

Bornyakov VG et al. (DIK Collaboration), Phys. Rev.D. 2004;70:074511.