A Numerical Method for Pulse Propagation in Nonlinear Dispersive Optical Media
Gaston Edah *
Département de Physique, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Bénin and International Chair of Mathematical Physics and Applications (ICMPA-Unesco Chair), Université d’Abomey-Calavi, Bénin.
Aurélien Goudjo
Département de Mathématiques, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Bénin.
Jamal Adetola
Département de Mathématiques, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Bénin.
Marc Amour Ayela
Institut de Mathématiques et de Sciences Physiques , Université d’Abomey-Calavi, Bénin.
*Author to whom correspondence should be addressed.
Abstract
In this work, the pulse propagation in a nonlinear dispersive optical medium is numerically investigated. The finite difference time-domain scheme of third order and periodic boundary conditions are used to solve generalized nonlinear Schr¨odinger equation governing the propagation of the pulse. As a result a discrete system of ordinary differerential equations is obtained and solved numerically by fourth order Runge-Kutta algorithm. Varied input ultrashort laser pulses are used. Accurate results of the solutions are obtained and the comparison with other results is excellent.
Keywords: Finite difference time-domain method, generalized nonlinear Schr¨odinger equation, periodic boundary conditions