A Numerical Method for Pulse Propagation in Nonlinear Dispersive Optical Media

Gaston Edah *

Département de Physique, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Bénin and International Chair of Mathematical Physics and Applications (ICMPA-Unesco Chair), Université d’Abomey-Calavi, Bénin.

Aurélien Goudjo

Département de Mathématiques, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Bénin.

Jamal Adetola

Département de Mathématiques, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Bénin.

Marc Amour Ayela

Institut de Mathématiques et de Sciences Physiques , Université d’Abomey-Calavi, Bénin.

*Author to whom correspondence should be addressed.


Abstract

In this work, the pulse propagation in a nonlinear dispersive optical medium is numerically investigated. The finite difference time-domain scheme of third order and periodic boundary conditions are used to solve generalized nonlinear Schr¨odinger equation governing the propagation of the pulse. As a result a discrete system of ordinary differerential equations is obtained and solved numerically by fourth order Runge-Kutta algorithm. Varied input ultrashort laser pulses are used. Accurate results of the solutions are obtained and the comparison with other results is excellent.

Keywords: Finite difference time-domain method, generalized nonlinear Schr¨odinger equation, periodic boundary conditions


How to Cite

Edah, Gaston, Aurélien Goudjo, Jamal Adetola, and Marc Amour Ayela. 2021. “A Numerical Method for Pulse Propagation in Nonlinear Dispersive Optical Media”. Physical Science International Journal 25 (9):12-22. https://doi.org/10.9734/psij/2021/v25i930280.