The Dark Side of the Entangled Informational Universe

Olivier Denis *

Entropic Information, Space, 13 Rue Joseph Nicolas-4300 Waremme, Belgium.

*Author to whom correspondence should be addressed.


Abstract

After having explored some basic theoretical concepts about the quantum information approach, we focus on Entropic Information Theory which is an informational approach mathematically based on the mass of the bit of information; massbit = \(\frac{kTIn(2)}{c^2}\). The mass of the bit of information and the new entropy formulae associated to it, S = k2\(\frac{TIn(2)t}{h}\) , and its alternative writings lead to new formulation, SBH = K\(\frac{c^3In(2)tevap}{16\pi^2GM}\), to calculate the entropy of black holes independently of the law of area. Being able to express the fine-grained gravitational entropy of a black hole using the rules of gravity, we can, at this level, speak of quantum gravity as emerging through the fundamentality of entangled quantum information by considering that information emerges from degree of freedom; indeed, information being a quantum state change due to the modification of one degree of freedom from the considered quantum system. In addition, we calculated the informational content of the observable universe using the entropic information formula, to obtain, 1.57 1099  bits, a result remarkably close to some previous estimates to account for all the dark matter missing in the visible Universe. After that, we calculated the amount of energy associated with this informational content using Landauer's principle, to obtain, 3.50 1076 Joules, a result that we can relate to dark energy estimates. Moreover, some deep considerations based on the perspectives of Entropic Information Theory have been explored. This new complete mathematical framework of Entropic Information Theory can explain various processes being several aspects of the same, entangled information, by considering that information emerges from degree of freedom, it is the theoretical framework of the entangled informational universe.

Keywords: Information, dark matter, dark energy, entropy, quantum gravity, Landauer’s principle, entropic information theory


How to Cite

Denis, O. (2022). The Dark Side of the Entangled Informational Universe. Physical Science International Journal, 26(6), 39–58. https://doi.org/10.9734/psij/2022/v26i6750

Downloads

Download data is not yet available.

References

Hardy L. Probability theories in general and quantum theory in particular. Stud Hist Philos Sci B. 2003;34(3):381-93, ISSN 1355-2198.

DOI: 10.1016/S1355-2198(03)00034-0

Preskill J. Quantum computation, course information for physics 219/computer Science 219 (formerly physics 229).

Available:http://theory.caltech.edu/~preskill/ph229/

Lloyd S. Almost any quantum logic gate is universal. Phys Rev Lett. 1995;75(2): 346-9.

DOI: 10.1103/PhysRevLett.75.346, PMID 10059671.

Deutsch D, Barenco A, Ekert A. Proc R Soc Lond A. 1995;449:669-77.

Ghirardi GC, Rimini A, Weber T. A general argument against superluminal transmission through the quantum mechanical measurement process. Lettere Nuovo Cimento. March 1980;27(10):293-8.

DOI: 10.1007/BF02817189. S2CID 121145494.

John Preskill Course Information for Physics 219/Computer Science 219, Quantum Computation (Formerly Physics 229).

Dembski W. How informational realism dissolves the mind-body problem” at mind and matter: modern dualism, idealism and the empirical sciences; forthcoming.

Denis O. Entropic information & Black hole: Black Hole information entropy the missing link. Phys Sci Int J. 2022;26(1): 20-34.

DOI: 10.9734/psij/2022/v26i130304

Rovelli C. Relative information at the foundation of physics, Second prize in the 2013 FQXi context ’It From Bit or Bit From It?’; 2013.

Available:arXiv:1311.0054v1 [hep-th]

Vopson MM. The mass-energy-information equivalence principle, AIP Advances 9, 095206; 2019.

Available:https://aip.scitation.org/doi/10.1063/1.5123794

Casini H. Relative entropy and the Bekenstein bound. Class Quantum Grav. 2008;25(20):205021.

DOI: 10.1088/0264-9381/25/20/205021. arXiv:0804.2182]

Bousso RJ. High Energy Phys. Holography in general space-times. Bibcode 1999;6:028.

Available:arXiv:hep-th/9906022:1999JHEP:06.028B.

DOI: 10.1088/1126-6708/1999/06/028. S2CID 119518763

Bousso R. A covariant entropy conjecture. J High Energy Phys;1999(7): 004.

Available:arXiv:hep-th/9905177:4.

DOI: 10.1088/1126-6708/1999/07/004.

Bibcode R. S2CID 9545752;07(004B):1999JHEP.

DOI: 10.1088/1126-6708/1999/07/004

Bousso R. The holographic principle for general backgrounds. Class Quantum Grav. 2000;17(5):997-1005.

Available:arXiv:hep-th/9911002.

DOI: 10.1088/0264-9381/17/5/309.

Bibcode R. 2000CQGra:17.997B.

DOI: 10.1088/0264-9381/17/5/309. S2CID 14741276

Bekenstein JD. Holographic bound from second law of thermodynamics. Phys Lett B. 2000;481(2-4):339-45.

Available:arXiv:hep-th/0003058

DOI: 10.1016/S0370-2693(00)00450-0.

Bibcode JD. PhLB. 2000:481.339B.

DOI: 10.1016/S0370-2693(00)00450-0. S2CID 119427264.

Bousso R, Raphael. The holographic principle (PDF). Rev Mod Phys. 2002 RvMP:74.825B.;74(3):825-74.

Available:arXiv:hep-th/0203101.

DOI: 10.1103/RevModPhys.74.825. S2CID 55096624. Archived from the original.

Bekenstein JD. Information in the Holographic Universe. Sci Am. August 2003;289(2):58-65. Mirror link.

DOI: 10.1038/scientificamerican0803-58, PMID 12884539.

Bousso R, Flanagan ÉÉ, Marolf D. Simple sufficient conditions for the generalized covariant entropy bound. Phys Rev D. 2003;68(6):064001.

Available: arXiv:hep-th/0305149.

DOI: 10.1103/PhysRevD.68.064001.

Bibcode R. 2003PhRvD. 68f4001B.

DOI:10.1103/PhysRevD.68.064001. S2CID 119049155.

Bekenstein JD. Black holes and information theory. Contemp Phys. 2004; 45(1):31-43.

Available:arXiv:quant-ph/0311049

DOI: 10.1080/00107510310001632523

Bibcode JD. 2004Con. Physiol.45...31B..

DOI: 10.1080/00107510310001632523. S2CID 118970250.

Tipler FJ. The structure of the world from pure numbers (PDF). Available from: arXiv:0704.3276. Rep Prog Phys. Prog Physiol [paper]. 903 of the Rep. 2005;68(4):897-964;2005RPPh... 68.897T.

DOI: 10.1088/0034-4885/68/4/R04.

Bibcode FJ. Tipler gives a number of arguments for maintaining that Bekenstein's original formulation of the bound is the correct form. See in particular the paragraph beginning with "A few points ..." on p (or p. 9 of the arXiv version), and the discussions on the Bekenstein bound that follow throughout the paper.

Piechocinska B. Information erasure. Phys Rev A. 2000;61(6):1-062314:9.

DOI: 10.1103/PhysRevA.61.062314

Daffertshofer A, Plastino AR. Landauer’s principle and the conservation of information. Phys Lett A. 2005;342(3): 213-6.

DOI: 10.1016/j.physleta.2005.05.058

Denis O. Entropic information theory: formulae and quantum gravity bits from Bit. Phys Sci Int J. 2021;25(9):23-30.

DOI: 10.9734/psij/2021/v25i930281

Bekenstein Jacob D. Universal upper bound on the entropy-to-energy ratio for bounded systems (PDF). PhysicalReviewD.1981;23(2):287–298.

Bibcode: 1981 PhRv D..23..287B.. Phys Rev D. 1981;23(2):287-98.

DOI: 10.1103/PhysRevD.23.287

Denis O. The entangled informational universe. Phys Sci Int J. 2022;26(4):1-16.

DOI: 10.9734/psij/2022/v26i430317

Bekenstein JD. Black holes and entropy. Phys Rev D. 1973;7(8):2333-46.

DOI: 10.1103/PhysRevD.7.2333.

Hawking SW. Particle creation by black holes. Commun Math Phys. 1975; 43(3):199-220.

DOI: 10.1007/BF02345020

Davies PCW. Why is the physical world so comprehensible? In: Zurek WH, editor. Complexity, entropy and the physics of information. Redwood City, CA: Addison-Wesley. 1990;61.

Wheeler JA. Information, physics, quantum: The search for links. In: Zurek WH, editor. Complexity, entropy and the physics of information. Redwood City, CA: Addison-Wesley. 1990;354.

Lloyd S. Computational capacity of the universe. Phys Rev Lett. 2002; 88(23):237901.

DOI: 10.1103/PhysRevLett.88.237901, PMID 12059399.

Ade PAR, et al. Planck 2013 results. XVI. Cosmological Parameters Astron Astrophys. 2014;571:A16.

The information content of the Universe and the implications for the missing Dark Matter; 2019.

DOI: 10.13140/RG.2.2.19933.46560

Eadie GM, Harris WE. Astrophys J. 2016; 829(2).

Conselice CJ, Wilkinson A, Duncan K, Mortlock A. The evolution of galaxy number density at z < 8 and its implications. Astrophys J. 2016;830(2):83.

DOI: 10.3847/0004-637X/830/2/83

Gough MP. Information equation of state. Entropy. 2008;10(3):150-9.

DOI: 10.3390/entropy-e10030150

Vopson MM. The information catastrophe. AIP Adv. 2020;10(8):085014.

DOI: 10.1063/5.0019941

Melvin M. Vopsona Estimation of the information contained in the visible matter of the universe. AIP Adv. 2021;11:105317.

DOI: 10.1063/5.0064475

Lloyd S. Ultimate physical limits to computation. Nature. 2000;406(6799): 1047-54.

DOI: 10.1038/35023282, PMID 10984064.

Bennett CH. Logical reversibility of computation. IBM J Res Dev. 1973;17(6): 525-32.

DOI: 10.1147/rd.176.0525

Bennett CH. The thermodynamics of computation – A review. Int J Theor Phys. 1982;21(12):905-40.

DOI: 10.1007/BF02084158

Bennett CH. Notes on the history of reversible computation. IBM J Res Dev. 1988;32(1):16-23.

DOI: 10.1147/rd.321.0016

Landauer R. Dissipation and noise immunity in computation and communication. Nature. 1988;335(6193): 779-84.

DOI: 10.1038/335779a0

Landauer R. Computation: A fundamental physical view. Phys Scr. 1987;35(1):88-95.

DOI: 10.1088/0031-8949/35/1/021

Bennett CH. Information physics in cartoons. Superlatt Microstruct. 1998;23(3-4):367-72.

DOI: 10.1006/spmi.1997.0558

Feynman RP. Lectures on computation. Penguin Books. 1999;137-84.

Bennett CH. Notes on Landauer’s principle, reversible computation, and Maxwell’s demon. Stud Hist Philos Mod Phys. 2003;34(3):501-10.

DOI: 10.1016/S1355-2198(03)00039-X

Landauer R. Irreversibility and heat generation in the computing process. IBM J Res Dev. 1961;3:183-91.

Plenio MB, Vitelli V. The physics of forgetting: Landauer’s erasure principle and information theory. Contemp Phys. 2001;42(1):25-60.

DOI: 10.1080/00107510010018916

Ladyman J, Presnell S, Short AJ, Groisman B. The connection between logical and thermodynamic irreversibility. Stud Hist Philos Mod Phys. 2007;38(1): 58-79.

DOI: 10.1016/j.shpsb.2006.03.007

Zeilinger A. A foundation principle of quantum physics. Found Phys. 1999; 29(4):631-43.

DOI: 10.1023/A:1018820410908

Braunstein SL, Pati AK. Quantum information cannot be completely hidden in correlations: Implications for the black-hole information paradox. Phys Rev Lett. 2007; 98(8):080502.

Available: gr-qc/0603046

DOI:10.1103/PhysRevLett.98.080502, PMID 17359079.

Lee J-W, Lee J, Kim HC. Quantum informational dark energy: Dark energy from forgetting. arXiv E-Print, 2008;8. [arXiv/0709.0047].

Bérut A, Arakelyan A, Petrosyan A, Ciliberto S, Dillenschneider R, Lutz E. Experimental verification of Landauer’s principle linking information and thermodynamics. Journal Nature on March 8. Nature. 2012;483(7388):187-9.

DOI:10.1038/nature10872,

PMID 22398556.

Peebles PJE. Principles of physical cosmology. Princeton University Press; 1993.

Gough MP. Information dark energy can resolve the Hubble tension and is falsifiable by experiment. Entropy (Basel). 2022;24(3): 385.

DOI: 10.3390/e24030385, PMID 35327896.